Answer:
F = 0.483 N
Explanation:
Initial momentum, 
Final momentum, 
Time, t = 31 s
We need to find the force of a lead ball. We can use here the impulse momentum theorem.

F is force

So, the force is 0.483 N.
Answer:
The extension of the wire is 0.362 mm.
Explanation:
Given;
mass of the object, m = 4.0 kg
length of the aluminum wire, L = 2.0 m
diameter of the wire, d = 2.0 mm
radius of the wire, r = d/2 = 1.0 mm = 0.001 m
The area of the wire is given by;
A = πr²
A = π(0.001)² = 3.142 x 10⁻⁶ m²
The downward force of the object on the wire is given by;
F = mg
F = 4 x 9.8 = 39.2 N
The Young's modulus of aluminum is given by;

Where;
Young's modulus of elasticity of aluminum = 69 x 10⁹ N/m²

Therefore, the extension of the wire is 0.362 mm.
'A' and 'C' both show that behavior.
'D' also shows it, but the object is moving backwards when time begins.
First it moves faster and faster backwards, then it moves slower and slower backwards.
The answer is D.Puck.
♡♡Hope I helped!!! :)♡♡