1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Murljashka [212]
3 years ago
10

I load a 0.4 kg marble into a slingshot and shoot it directly upward by applying a 36.2 N force

Physics
1 answer:
kakasveta [241]3 years ago
8 0

Answer:50mph

Explanation:

You might be interested in
A +12 μC charge and -8 μC charge are 4 cm apart. Find the magnitude and direction of the E-field at the point midway between t
Natasha_Volkova [10]

Answer:

Explanation:

Given

Charge of first Particle q_1=+12\ \mu C

Charge of second Particle q_2=-8\ \mu C

distance between them d=4\ cm

k=9\times 10^{9}

magnetic field due to first charge at mid-way between two charged particles is

E_1=\frac{kq_1}{r^2}

r=\frac{d}{2}=\frac{4}{2}=2\ cm

E_1=\frac{9\times 10^9\times 12\times 10^{-6}}{(2\times 10^{-2})^2}

E_1=27\times 10^7\ N/C (away from it)

Electric field due to q_2=-8\ \mu C

E_2=\frac{kq_2}{r^2}

E_2=-\frac{9\times 10^9\times 8\times 10^{-6}}{(2\times 10^{-2})^2}

E_2=-18\times 10^7\ N/C(towards it)

E_{net}=E_1+E_2

E_{net}=9\times 10^7\ N/C(away from first charge)        

8 0
3 years ago
Do mirrors reflect light
777dan777 [17]

Answer:

Yes, Mirror are a surface that reflects light more perfectly than ordinary objects.

Explanation:

8 0
3 years ago
if you have a mass of 55 kg and you are standing 3 meters away from your car, which has a mass of 1234 kg, how strong is the for
bagirrra123 [75]

Gravitational force between two masses is given by formula

F = \frac{Gm_1m_2}{r^2}

here we know that

m_1 = 55 kg

m_2 = 1234 kg

r = 3 m

G = 6.67 \times 10^{-11} Nm^2/kg^2

now from the above equation we will have

F = \frac{(6.67 \times 10^{-11})(55)(1234)}{3^2}

F = 5.03 \times 10^{-7}N

so above is the gravitational force between car and the person

5 0
3 years ago
A(n) 55.5 g ball is dropped from a height of 53.6 cm above a spring of negligible mass. The ball compresses the spring to a maxi
Serggg [28]

Answer:

The spring force constant is  k=243\ \frac{N}{m} .

Explanation:

We are told the mass of the ball is m=0.0555\ kg, the height above the spring where the ball is dropped is h=0.536\ m,  the length the ball compresses the spring is d=0.04897\ m and the acceleration of gravity is 9.8\ \frac{m}{s^{2}} .

We will consider the initial moment to be when the ball is dropped and the final moment to be when the ball stops, compressing the spring. We supose that there is no friction so the initial mechanical energy E_{mi} is equal to the final mechanical energy E_{mf} :

                                                    E_{mf}=E_{mi}

Initially there is only gravitational potential energy because the force of the spring isn't present and the speed is zero. In the final moment there is only elastic potential energy because the height is zero and the ball has stopped. So we have that:

                                                   \frac{1}{2}kd^{2}=mgh

If we manipulate the equation we have that:

                                                    k=\frac{2mgh}{d^{2} }

                                         k=\frac{2\ 0.0555\ kg\ 9.8\frac{m}{s^{2}}\ 0.536\ m}{(0.04897)^{2}m^{2}}

                                              k=\frac{0.58306\ \frac{kgm^{2}}{s^{2}}}{2.398x10^{-3}m^{2}}

                                                     k=243\ \frac{N}{m}

                                                   

                             

5 0
4 years ago
If riding a lawnmower engine exerts 19 hp in one minute to move the lawnmower how much work is done
ioda

Answer:

the work done by the lawnmower is 236.14 J.

Explanation:

Given;

power exerted by the lawnmower engine, P = 19 hp

time in which the power was exerted, t = 1 minute = 60 s.

1 hp = 745.7 watts

The work done by the lawnmower is calculated as follows;

Work = Energy = \frac{Power}{time} \\\\Work = \frac{(19 \times 745.7)}{60} = 236.14 \ J

Therefore, the work done by the lawnmower is 236.14 J.

6 0
3 years ago
Other questions:
  • Which statement is true of a wave that’s propagating along the pavement and girders of a suspension bridge?
    5·2 answers
  • Observations of galaxies and clusters of galaxies indicate that about ____ percent of the matter in the universe is dark matter.
    10·1 answer
  • Which electromagnetic wave is used in dental scans?
    11·2 answers
  • From the concepts you have learned in this module, how are you going to assess
    12·1 answer
  • Which statement best describes the difference(s) between atoms and molecules?
    13·2 answers
  • Your car gets a flat! You go from 90 kilometers per hour to a stop in 6 seconds. What is your rate of deceleration? (it's negati
    11·1 answer
  • Which of the following units would need to be converted before being used for a calculation?
    6·1 answer
  • How much power will be required to force a current of 4.13 amps to flow through a conductor whose resistance is 113 ohms? Use tw
    15·1 answer
  • We see a full moon by reflected sunlight. How much earlier did the light that enters our eye leave the sun? the earth-moon and e
    8·1 answer
  • Jupiter has enough mass to make 318 earths. In contrast, uranus and neptune have only enough mass to make.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!