Answer:
The earth's gravitational force on the sun is equal to the sun's gravitational force on the earth
Explanation:
Newton's third law (law of action-reaction) states that:
"When an object A exerts a force (called action) on an object B, then object B exerts an equal and opposite force (called reaction) on object A"
In other words, when two objects exert a force on each other, then the magnitude of the two forces is the same (while the directions are opposite).
In this problem, we can call the Sun as "object A" and the Earth as "object B". According to Newton's third law, therefore, we can say that the gravitational force that the Earth exerts on the Sun is equal (in magnitude, and opposite in direction) to the gravitational force that the Sun exerts on the Earth.
Kinetic Energy is calculated by KE= 1/2mv2
Explanation:
M₂ = Fr²/GM₁
M₂ = [(132N)(.243m)²]/[(6.67*10^-11N*m²/kg)(1.175*10^4kg)]
M₂ = (7.79N*m²)/(7.84*10^-7N*m²)
M₂ = 9.94*10^6 kg
Answer:
When thermal energy is added to a substance, its temperature increases, which can change its state from solid to liquid (melting), liquid to gas (vaporization), or solid to gas (sublimation). ... When the pressure exerted on a substance increases, it can cause the substance to condense.
Explanation:
Hope it will help use