Answer: vf1/vf2= 1/ sqrt(2)
Explanation :on the moon no drag force so we have only the force of gravity. aceleration is g(moon)= 1.62m/s2.the rest is basic kinematics
if the rock travels H to the bottom we can calculate velocity:
vo=0m/s (drops the rock) , yo=0
vf*vf= vo*vo+2g(y-yo)
when the rock is halfway y = H/2 so:
vf1*vf1=2*g*H/2 so vf1 = sqrt(gH)
when the rock reach the bottom y=H so:
vf2*vf2=2*g*H so vf2 = sqrt(2gH)
so vf1/vf2= 1/ sqrt(2)
good luck from colombia
For a constant-velocity object, the average and instantaneous are the same. So the answer is no. It's like taking a running average of a string of numbers that are all the same number. The average is always the sum of the numbers divided by how many have accumulated, which will always equate to the repeated number.
Answer:

Explanation:
From the question we are told that
Weight of fireman 
Pole distance 
Final speed is 
Generally the equation for velocity is mathematically represented as

Therefore Acceleration a
Generally the equation for Frictional force
is mathematically given as



Therefore

Answer:
a) Temperatura, b) Temperature, c) Constant
, d) None of these
, e) Gibbs enthalpy and free energy (G)
Explanation:
a) the expression for ideal gases is PV = nRT
Temperature
b) The internal energy is E = K T
Temperature
c) S = ΔQ/T
In an isolated system ΔQ is zero, entropy is constant
Constant
d) all parameters change when changing status
None of these
e) Gibbs enthalpy and free energy
Answer:
D
Explanation:
reactants have higher potential energy and energy is absorbed