In the drawing the base picture shows two squares on next to each other
The side picture shows three squares, one next to other and one above the square that right most.
The front picture shows two one square above other square.
The three dimensional figure that corresponds to those three view is a set of three boxes two in the base and one above one of the boxes of the base.
7/g This is the correct answer to your problem
Answer:
20
Step-by-step explanation:
Answer:
The final integration in the given limits will be 89.876
Answer:
-3, 1, 4 are the x-intercepts
Step-by-step explanation:
The remainder theorem tells you that dividing a polynomial f(x) by (x-a) will result in a remainder that is the value of f(a). That remainder will be zero when (x-a) is a factor of f(x).
In terms of finding x-intercepts, this means we can reduce the degree of the polynomial by factoring out the factor (x-a) we found when we find a value of "a" that makes f(a) = 0.
__
For the given polynomial, we notice that the sum of the coefficients is zero:
1 -2 -11 +12 = 0
This means that x=1 is a zero of the polynomial, and we have found the first x-intercept point we can plot on the given number line.
Using synthetic division to find the quotient (and remainder) from division by (x-1), we see that ...
f(x) = (x -1)(x² -x -12)
We know a couple of factors of 12 that differ by 1 are 3 and 4, so we suspect the quadratic factor above can be factored to give ...
f(x) = (x -1)(x -4)(x +3)
Synthetic division confirms that the remainder from division by (x -4) is zero, so x=4 is another x-intercept. The result of the synthetic division confirms that x=-3 is the remaining x-intercept.
The x-intercepts of f(x) are -3, 1, 4. These are the points you want to plot on your number line.