Answer: v = 
Explanation: q = magnitude of electronic charge = 
mass of an electronic charge =
V= potential difference = 4V
v = velocity of electron
by using the work- energy theorem which states that the kinetic energy of the the electron must equal the work done use in accelerating the electron.
kinetic energy =
, potential energy = qV
hence, 

The formula for work is
F*d
Therefore work=2.0N*3.0=6N*m
The book is lifted upward, but gravity points down, so the work done by gravity must be negative (so you can eliminate options 1 and 3).
The force exerted on the book by gravity has magnitude
<em>F</em> = <em>mg</em> = (10 N) (9.80 m/s^2) = 9.8 N ≈ 10 N
You raise the book 1.0 m in the opposite direction, so the work done is
<em>W</em> = (10 N) (-1.0 m) = -10 J
Answer:
W = 9.6 N
Explanation:
Given that,
Area on 1 foot, A = 0.6 m²
Pressure, P = 16 Pa
The pressure is given by force acting per unit area. So,

So, the required weight is 9.6 N.
The answer is C. the earths mantle because the wood in this case is the surface