1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blizzard [7]
3 years ago
11

Momentum is most similar to which other physics concept?

Physics
1 answer:
Dmitrij [34]3 years ago
3 0

Answer:

Among force and impulse, There is a lesser calculation for impulse. Also, it has same dimensions as momentum. Hence that is most closely related.

You might be interested in
A cat runs and jumps from one roof top to another which is 5 m away and 3 m below. Calculate the minimum horizontal speed with w
icang [17]
ThIs is the same type of problem
find out the time value
3 = 1/2*a*T^2
6/10 = t^2
t = 0.77 seconds
and the distance is given 5 m
thus speed ,= distance/time
speed = 5/0.77
= 6.45 m/s
6 0
3 years ago
In the "before" part of Fig. 9-60, car A (mass 1100 kg) is stopped at a traffic light when it is rear-ended by car B (mass 1400
liq [111]

Complete Question:

In the "before" part of Fig. 9-60, car A (mass 1100 kg) is stopped at a traffic light when it is rear-ended by car B (mass 1400 kg). Both cars then slide with locked wheels until the frictional force from the slick road (with a low ?k of 0.15) stops them, at distances dA = 6.1 m and dB = 4.4 m. What are the speeds of (a) car A and (b) car B at the start of the sliding, just after the collision? (c) Assuming that linear momentum is conserved during the collision, find the speed of car B just before the collision.

Answer:

a) Speed of car A at the start of sliding = 4.23 m/s

b) speed of car B at the start of sliding = 3.957 m/s

c) Speed of car B before the collision = 7.28 m/s

Explanation:

NB: The figure is not provided but all the parameters needed to solve the question have been given.

Let the frictional force acting on car A, f_{ra} = \mu mg\\............(1)

Since frictional force is a type of force, we are safe to say f_{ra} = ma.......(2)

Equating (1) and (2)

ma = \mu mg\\a = \mu g\\\mu = 0.15\\a = 0.15 * 9.8 = 1.47 m/s^{2}

a) Speed of A at the start of the sliding

d_{A} = 6.1 m\\Speed of A at the start of sliding, v_{A} = \sqrt{2ad_{A} }\\ v_{A} = \sqrt{2*1.47*6.1 } \\v_{A} = \sqrt{17.934 } \\v_{A} = 4.23 m/s

b) Speed of B at the start of the sliding

d_{A} = 4.4 m\\Speed of A at the start of sliding, v_{B} = \sqrt{2ad_{B} }\\ v_{B} = \sqrt{2*1.47*4.4 } \\v_{B} = \sqrt{12.936 } \\v_{B} = 3.957 m/s

Let the speed of car B before collision = v_{B1}

Momentum of car B before collision = m_{B} v_{B1}

Momentum after collision = m_{A} v_{A} + m_{B} v_{B2}

Applying the law of conservation of momentum:

m_{B} v_{B1}  = m_{A} v_{A} +m_{B} v_{B2}

m_{A} = 1100 kg\\m_{B} = 1400 kg

(1400*v_{B1} ) = (1100 * 4.23) + ( 1400 * 3.957)\\(1400*v_{B1} ) = 10192.8\\v_{B1} = 10192.8/1400\\v_{B1 = 7.28 m/s

3 0
4 years ago
Read 2 more answers
A harmonic wave on a string with a mass per unit length of 0.050 kg/m and a tension of 60 N has an amplitude of 5.0 cm. Each sec
Dennis_Churaev [7]

Answer:

Power of the string wave will be equal to 5.464 watt

Explanation:

We have given mass per unit length is 0.050 kg/m

Tension in the string T = 60 N

Amplitude of the wave A = 5 cm = 0.05 m

Frequency f = 8 Hz

So angular frequency \omega =2\pi f=2\times 3.14\times 8=50.24rad/sec

Velocity of the string wave is equal to v=\sqrt{\frac{T}{\mu }}=\sqrt{\frac{60}{0.050}}=34.641m/sec

Power of wave propagation is equal to P=\frac{1}{2}\mu \omega ^2vA^2=\frac{1}{2}\times 0.050\times 50.24^2\times 34.641\times 0.05^2=5.464watt

So power of the wave will be equal to 5.464 watt

6 0
3 years ago
An apple with a mass of 0.95 kilograms hangs from 3.0 meters above the ground. What is the potential energy of the apple
Vesnalui [34]

As Potential energy =mgh

m= 0.95kg

h=3 meter

g = 9.8 m/sec^2. ( acceleration due to gravity)

So P.E =(0.95)(9.8)(3)kgm^2/s^2

P.E =27.93 joules

3 0
3 years ago
How does the observed pitch of the buzzer change as it moves
andriy [413]

The answer is

Pitch of the buzzer increased (higher tone) as it moves towards the observer

5 0
3 years ago
Other questions:
  • A parallel-plate capacitor is charged by connecting it across the terminals of a battery. If the battery remains connected and t
    15·1 answer
  • Why are plate tectonics a theory?
    15·1 answer
  • The four fundamental types of organic molecules are nucleic acids, proteins, lipids, and ________.
    8·2 answers
  • Newton said that something was needed to change the motion of an object. a clear reading of his first law tells us that what is
    10·1 answer
  • A uniform string of length 10.0 m and weight 0.32 N is attached to the ceiling. A weight of 1.00 kN hangs from its lower end. Th
    12·1 answer
  • There are two ways that an object can get in motion. What are they?You may use the following sentence frame:An object can get in
    8·2 answers
  • An experiment is performed to test the effect of three different types of water on the growth of a plant. The test is done by us
    9·2 answers
  • Difference between liquid solid and gas in the arrangement of molecules​
    10·2 answers
  • ___meaning two' sugar (or saccharide) units in a chain.
    5·1 answer
  • What is the theory of the beginning of the Universe?​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!