To solve this problem we will apply the concepts related to the balance of forces. Said balance will be given between buoyancy force and weight, both described as derived from Newton's second law, are given as
Buoyancy force

Here,
V = Volume
=Density of air
g = Acceleration due to gravity
Weight

m = mass
g = Gravity
Our values are given as,




Then,

Replacing,

Now net force is ,

Mass of the sphere is

Now acceleration of the sphere is



Therefore the acceleration of the sphere as it falls through water is 
Acceleration is change in velocity over change in time. Your Δv is +13.9, since you increased speed by 50 km/h which is 13.9 m/s, and your Δt is 10s. 13.9/10 = 1.39 m/s^2, the standard units for acceleration. Make sense?
Answer:
Things float when they are positively buoyant, or less dense than the fluid in which they are sitting. This does not mean that an object has to be lighter than the fluid, as in the case of a boat; objects just need to have a greater ratio of empty space to mass than the fluid.
Explanation:
pls mark as brainliest
The answer is the last option
Explanation:
Answer:
Unknown
Explanation:
By definition, we can't observe what's inside there, because no light – no information of any kind – can escape a black hole. But astrophysical theories suggest that, at the core of a black hole, all the black hole's mass is concentrated into a tiny point of infinite density. This point is known as a singularity.