Answer:
Vf = 4.77 m/s
Explanation:
During the downward motion we can easily find the final velocity or the velocity with which the ball hits the ground, by using third equation of motion. The third equation of motion is given as follows:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity = 9.8 m/s²
h = height = 1.16 m
Vf = Final Velocity of Ball = ?
Vi = Initial Velocity of Ball = 0 m/s (Since, ball was initially at rest)
Therefore, using these values in the equation, we get:
(2)(9.8 m/s²)(1.16 m) = Vf² - (0 m/s)²
Vf = √(22.736 m²/s²)
<u>Vf = 4.77 m/s</u>
Answer:
It has no effect on the amplitude.
Explanation:
When the sandbag is dropped, then the cart is at its maximum speed. Dropping the sand bag does not affect the speed instantly, this is because the energy remains within the system after the bag as been dropped. The cart will always return to its equilibrium point with the same amount of kinetic energy, as a result the same maximum speed is maintained.
U = 1/2 * k * x²
U = 0.003J
x = 0.0055m
k spring constant
I think it’s the first diagram
A I think .......
Explanation: