Answer:
Tp/Te = 2
Therefore, the orbital period of the planet is twice that of the earth's orbital period.
Explanation:
The orbital period of a planet around a star can be expressed mathematically as;
T = 2π√(r^3)/(Gm)
Where;
r = radius of orbit
G = gravitational constant
m = mass of the star
Given;
Let R represent radius of earth orbit and r the radius of planet orbit,
Let M represent the mass of sun and m the mass of the star.
r = 4R
m = 16M
For earth;
Te = 2π√(R^3)/(GM)
For planet;
Tp = 2π√(r^3)/(Gm)
Substituting the given values;
Tp = 2π√((4R)^3)/(16GM) = 2π√(64R^3)/(16GM)
Tp = 2π√(4R^3)/(GM)
Tp = 2 × 2π√(R^3)/(GM)
So,
Tp/Te = (2 × 2π√(R^3)/(GM))/( 2π√(R^3)/(GM))
Tp/Te = 2
Therefore, the orbital period of the planet is twice that of the earth's orbital period.
Answer:
29.4 N/m
0.1
Explanation:
a) From the restoring Force we know that :
F_r = —k*x
the gravitational force :
F_g=mg
Where:
F_r is the restoring force .
F_g is the gravitational force
g is the acceleration of gravity
k is the constant force
xi , x2 are the displacement made by the two masses.
Givens:
<em>m1 = 1.29 kg</em>
<em>m2 = 0.3 kg </em>
<em>x1 = -0.75 m </em>
<em>x2 = -0.2 m </em>
<em>g = 9.8 m/s^2 </em>
Plugging known information to get :
F_r =F_g
-k*x1 + k*x2=m1*g-m2*g
k=29.4 N/m
b) To get the unloaded length 1:
l=x1-(F_1/k)
Givens:
m1 = 1.95kg , x1 = —0.75m
Plugging known infromation to get :
l= x1 — (F_1/k)
= 0.1
Answer:anion followed by cation
Explanation:
Answer:
16.25 m
Explanation:
we know that the equation pf parabola

from bellow figure the coordinate of parabola is (600,65) that is y=600 and x=65
putting the the value of y and x in the equation of parabola

k=0.0001805
now the equation is

we have to find the value of y at x=300m
so 
y=16.25 m