(a) In this section, give your answers to three decimal places.
(i)
Calculate the mass of carbon present in 0.352 g of CO
2
.
Use this value to calculate the amount, in moles, of carbon atoms present in 0.240 g
of
A
.
(ii)
Calculate the mass of hydrogen present in 0.144 g of H
2
O.
Use this value to calculate the amount, in moles, of hydrogen atoms present in 0.240 g
of
A
.
(iii)
Use your answers to calculate the mass of oxygen present in 0.240 g of
A
Use this value to calculate the amount, in moles, of oxygen atoms present in 0.240 g
of
A
(b)
Use your answers to
(a)
to calculate the empirical formula of
A
thank you
hope it helpsss
Answer:
the ideal gas law
Explanation:
hope this helps
please like and Mark as brainliest
<span>Well, during the day, the water, as well as the surfaces surrounding the water, are heated by various thermodynamic processes: conduction, convection, radiation, etc. This in turn warms the water molecules in the lakes, streams, rivers, and oceans, thereby transferring heat (their kinetic energy) to the water molecules, which in turn receive that energy from the surrounding surfaces, or directly via radiation/insolation from the sun. When the water molecules attain enough energy, some of them attain enough energy to escape the surface of the liquid and enter the gas phase. Hence, as water is heated, more and more water molecules attain enough kinetic energy to enter the gas phase.</span>
Answer: The Earth is an oblate spheroid which is more elongated along the equator.
Regions along the equator receives more amount of direct sunlight from the sun causing higher temperatures along the region. While places along the poles receives less amount of heat since heat is scattered in a larger area due to the shape of the Earth around the poles.
Explanation: So places along the equator experiences higher temperature due to the direct hit of sunlight. And places along the polar regions experiences cooler temperature since it receives less amount of sunlight.
Because zinc is above lead on the activity series. This means that in a single displacement reaction such as this one, Pb will not easily displace Zn.