1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergeeva-Olga [200]
3 years ago
10

The diagram shows a motion map for a train. A motion map. The position line is a long black arrow pointing right that is labeled

x. Above the line are three dots with a vector pointing away from x that start farther right from x. There are three black dots that are in a vertical column above the point of the third vector. There are two yellow vectors with no black dots pointed toward x starting just above the vertical column of three dots. Which statement is supported by the motion map? The train traveled south and then north. The train moved at a velocity of 75 mph north. The train had a greater velocity when it moved away from the origin. The train stopped for 3 seconds.
Physics
1 answer:
Elis [28]2 years ago
5 0

Answer:

the train stopped for 3 seconds

Explanation:

You might be interested in
Make a claim for the behavior of charged objects with other charged objects. Make a claim for the behavior of charged objects wi
emmainna [20.7K]

charged objects will either attract or repel other charged objects

3 0
2 years ago
Read 2 more answers
A bowling ball of mass 5.8 kg moves in a straight line at 4.34 m/s How fast must a Ping-Pong ball of mass 2.214 g move in a stra
lilavasa [31]

Answer: 11369.46 m/s

Explanation:

We have the following data:

m_{1}=5.8 kg is the mass of the bowling ball

V_{1}=4.34 m/s is the velocity of the bowling ball

m_{2}=2.214 g \frac{1 kg}{1000 g}=0.002214 kg is the mass of the ping-pong ball

V_{2} is the velocity of the ping-pong ball

Now, the momentum p_{1} of the bowling ball is:

p_{1}=m_{1}V_{1} (1)

p_{1}=(5.8 kg)(4.34 m/s)  

p_{1}=25.172 kg m/s (2)

And the momentum p_{2} of the ping-pong ball is:

p_{2}=m_{2}V_{2} (3)

If the momentum of the bowling ball is equal to the momentum of the ping-pong ball:

p_{1}=p_{2} (4)

m_{1}V_{1}=m_{2}V_{2} (5)

Isolating V_{2}:

V_{2}=\frac{m_{1}V_{1}}{m_{2}} (6)

V_{2}=\frac{25.172 kg m/s}{0.002214 kg} (7)

Finally:

V_{2}=11369.46 m/s

6 0
2 years ago
A train car has a mass of 10,000 kg and is moving at +3.0 m/s. It strikes an identical train car that is at rest. The train cars
Sergeeva-Olga [200]

Answer:

ok what is the question

3 0
2 years ago
Read 2 more answers
A toy rocket, launched from the ground, rises vertically with an acceleration of 28 m/s 2 for 9.7 s until its motor stops. Disre
vredina [299]

Answer:

5080.86m

Explanation:

We will divide the problem in parts 1 and 2, and write the equation of accelerated motion with those numbers, taking the upwards direction as positive. For the first part, we have:

y_1=y_{01}+v_{01}t+\frac{a_1t^2}{2}

v_1=v_{01}+a_1t

We must consider that it's launched from the ground (y_{01}=0m) and from rest (v_{01}=0m/s), with an upwards acceleration a_{1}=28m/s^2 that lasts a time t=9.7s.

We calculate then the height achieved in part 1:

y_1=(0m)+(0m/s)t+\frac{(28m/s^2)(9.7s)^2}{2}=1317.26m

And the velocity achieved in part 1:

v_1=(0m/s)+(28m/s^2)(9.7s)=271.6m/s

We do the same for part 2, but now we must consider that the initial height is the one achieved in part 1 (y_{02}=1317.26m) and its initial velocity is the one achieved in part 1 (v_{02}=271.6m/s), now in free fall, which means with a downwards acceleration a_{2}=-9,8m/s^2. For the data we have it's faster to use the formula v_f^2=v_0^2+2ad, where d will be the displacement, or difference between maximum height and starting height of part 2, and the final velocity at maximum height we know must be 0m/s, so we have:

v_{02}^2+2a_2(y_2-y_{02})=v_2^2=0m/s

Then, to get y_2, we do:

2a_2(y_2-y_{02})=-v_{02}^2

y_2-y_{02}=-\frac{v_{02}^2}{2a_2}

y_2=y_{02}-\frac{v_{02}^2}{2a_2}

And we substitute the values:

y_2=y_{02}-\frac{v_{02}^2}{2a_2}=(1317.26m)-\frac{(271.6m/s)^2}{2(-9.8m/s^2)}=5080.86m

3 0
3 years ago
A -0.06 charge that moves downward is in a uniform electric field with a strengthened of 200 N/C. What is the magnitude and dire
Nookie1986 [14]

Answer:

The magnitude of the force is 12 N Upwards

Explanation:

The force on a positive charge will be in the same direction as the field, but the force on a negative charge will be in the opposite direction to the field. Thus the direction of the force is upward.

Given;

magnitude of charge, q = 0.06 C

magnitude of electric field, E = 200 N/C

The magnitude of the force is given by;

F = qE

F = 0.06 x 200 N/C

F = 12 N Upwards

Therefore, the magnitude of the force is 12 N Upwards

5 0
3 years ago
Other questions:
  • What is the force when two charged spheres distance is in half​
    14·1 answer
  • What type of bonding is represented in Figure 2-2???
    6·1 answer
  • The hammer of an electric bell strikes 1440 times in a minute and does a work of 0.2 J per strike. what is the power of hammer i
    7·2 answers
  • Which statements describe elements? Check all that apply.
    15·2 answers
  • A bucket of water can be whirled in a vertical circle without the water spilling out, even at the top of the circle when the buc
    15·2 answers
  • A planet has a mass of 5.68 x 1026 kg and a radius of 6.03 x 107 m. What is the weight of a 65.0 kg person on the surface of thi
    5·1 answer
  • A block is launched up a frictionless 40° slope with an initial speed v and reaches a maximum vertical height h. The same block
    15·1 answer
  • Based on these answers how can I determine when electric field strength is affected or not
    15·1 answer
  • Which part of the motor is responsible for reversing the flow of current?
    14·1 answer
  • What causes waves to slow down: change in wave’s wavelength or change in its frequency and y?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!