Answer:
B) The sum of the squared residuals
Step-by-step explanation:
Least Square Regression Line is drawn through a bivariate data(Data in two variables) plotted on a graph to explain the relation between the explanatory variable(x) and the response variable(y).
Not all the points will lie on the Least Square Regression Line in all cases. Some points will be above line and some points will be below the line. The vertical distance between the points and the line is known as residual. Since, some points are above the line and some are below, the sum of residuals is always zero for a Least Square Regression Line.
Since, we want to minimize the overall error(residual) so that our line is as close to the points as possible, considering the sum of residuals wont be helpful as it will always be zero. So we square the residuals first and them sum them. This always gives a positive value. The Least Square Regression Line minimizes this sum of residuals and the result is a line of Best Fit for the bivariate data.
Therefore, option B gives the correct answer.
4 units out of 9 total units = 4/9
Answer: d
Write the equation of the lines in slope-intercept form (y=mx+b)
First equation: It is already in slope-intercept form

Second equation: solve y:

Identify the slope of each line:
If two or more lines have the same slope then the lines are parallel
If two lines have slopes that are negative reciprocals then the lines are perpendicular
The two given lines have the same slope: 2/5. Then, they are parallel lines
Yaaaaaayyy hurry let’s gooooo!!!!!