15x²+16x+4 =0 (ax² +bx +c=0)
Δ = b²-4ac =256 - 4×15×4 =16
x1 = (-b+√Δ) / 2a = (-16+√16) / 30 =( -16+4) / 30 = -12/30 = - 2/5
x2 = (-b -√Δ) / 2a = (-16 -√16) / 30 = (-16 -4) /30 = -20/30 = -2/3
Answer:
172.8 = 32 x 5.40
Step-by-step explanation:
X:2+(105-275:11):4=28
X:2+(105-25):4=28
X:2+80:4=28
X:2+20=28
X:2=28-20
X:2=8
X=8×2
X=16
Answer:
A. b(w) = 80w +30
B. input: weeks; output: flowers that bloomed
C. 2830
Step-by-step explanation:
<h3>Part A:</h3>
For f(s) = 2s +30, and s(w) = 40w, the composite function f(s(w)) is ...
b(w) = f(s(w)) = 2(40w) +30
b(w) = 80w +30 . . . . . . blooms over w weeks
__
<h3>Part B:</h3>
The input units of f(s) are <em>seeds</em>. The output units are <em>flowers</em>.
The input units of s(w) are <em>weeks</em>. The output units are <em>seeds</em>.
Then the function b(w) above has input units of <em>weeks</em>, and output units of <em>flowers</em> (blooms).
__
<h3>Part C:</h3>
For 35 weeks, the number of flowers that bloomed is ...
b(35) = 80(35) +30 = 2830 . . . . flowers bloomed over 35 weeks