Answer:
6480 km
Explanation:
The speed of the object is
v = 7500 cm/sec
We need to convert centimetres into kilometers and seconds into days. We have:


Using these conversion factors, we find:

Kinetic energy of pieces A and B are 2724 Joule and 5176 Joule respectively.
<h3>What is the relation between the masses of A and B?</h3>
Mass of piece B = Mb
- Velocities of pieces A and B are Va and Vb respectively.
- As per conservation of momentum,
Ma×Va = Mb×Vb
So, 1.9Mb × Va = Mb×Vb
=> 1.9Va = Vb
<h3>What are the kinetic energy of piece A and B?</h3>
- Expression of kinetic energy of piece A = 1/2 × Ma × Va²
- Kinetic energy of piece B = 1/2 × Mb × Vb²
- Total kinetic energy= 7900J
=>1/2 × Ma × Va² + 1/2 × Mb × Vb² = 7900
=> 1/2 × Ma × Va² + 1/2 × (Ma/1.9) × (1.9Va)² = 7900
=> 1/2 × Ma × Va² ×(1+1.9) = 7900 j
=> 1/2 × Ma × Va² = 7900/2.9 = 2724 Joule
- Kinetic energy of piece B = 7900 - 2724 = 5176 Joule
Thus, we can conclude that the kinetic energy of piece A and B are 2724 Joule and 5176 Joule respectively.
Learn more about the kinetic energy here:
brainly.com/question/25959744
#SPJ1
equilibrium i think if not sorry
(a) Let's convert the final speed of the car in m/s:

The kinetic energy of the car at t=19 s is

(b) The average power delivered by the engine of the car during the 19 s is equal to the work done by the engine divided by the time interval:

But the work done is equal to the increase in kinetic energy of the car, and since its initial kinetic energy is zero (because the car starts from rest), this translates into

(c) The instantaneous power is given by

where F is the force exerted by the engine, equal to F=ma.
So we need to find the acceleration first:

And the problem says this acceleration is constant during the motion, so now we can calculate the instantaneous power at t=19 s: