Answer:
3.46 seconds
Explanation:
Since the ball is moving in circular motion thus centripetal force will be acting there along the rope.
The equation for the centripetal force is as follows -
Where,
is the mass of the ball,
is the speed and
is the radius of the circular path which will be equal to the length of the rope.
This centripetal force will be equal to the tension in the string and thus we can write,

and, 
Thus,
m/s.
Now, the total length of circular path = circumference of the circle
Thus, total path length = 2πr = 2 × 3.14 × 2 = 12.56 m
Time taken to complete one revolution =
=
= 3.46 seconds.
Thus, the mass will complete one revolution in 3.46 seconds.
Answer:

Explanation:
We are asked to find the cyclist's initial velocity. We are given the acceleration, final velocity, and time, so we will use the following kinematic equation.

The cyclist is acceleration at 1.2 meters per second squared. After 10 seconds, the velocity is 16 meters per second.
= 16 m/s - a= 1.2 m/s²
- t= 10 s
Substitute the values into the formula.

Multiply.


We are solving for the initial velocity, so we must isolate the variable
. Subtract 12 meters per second from both sides of the equation.


The cyclist's initial velocity is <u>4 meters per second.</u>
Answer: idk that is a tough one!
Explanation: that is a hard question IDK
<span>A researcher claiming that females were more empathetic than males would test that hypothesis by using inferential statistics.</span>
The speed of a mechanical wave depends on the mechanical properties
of the medium through which the wave is traveling.
The speed of an electromagnetic wave depends on the electrical properties
of the medium through which the wave is traveling.
It's pretty well unanimous for choice <em>A</em> .