Answer:
5 mL
Explanation:
Given data:
mass of ring = 107 g
volume of water = 10 mL
increase in volume = 15 mL
How much water displace = ?
Solution:
V (ring) = V (water + ring) - V (water)
V (ring) = 15 mL - 10 mL
V (ring) = 5 mL
when the ring is put into cylinder, volume is increased by 15 mL. The volume of water was 10 mL so water is displaced by 5 mL and the volume 5mL is the voulme of ring.
Answer:
2.5L [NaCl] concentrate needs to be 4.8 Molar solution before dilution to prep 10L of 1.2M KNO₃ solution.
Explanation:
Generally, moles of solute in solution before dilution must equal moles of solute after dilution.
By definition Molarity = moles solute/volume of solution in Liters
=> moles solute = Molarity x Volume (L)
Apply moles before dilution = moles after dilution ...
=> (Molarity X Volume)before dilution = (Molarity X Volume)after dilution
=> (M)(2.5L)before = (1.2M)(10.0L)after
=> Molarity of 2.5L concentrate = (1.2M)(10.0L)/(2.5L) = 4.8 Molar concentrate
Gasoline would be a mixture if I recalled
I'd say b, but i'm not 100 percent sure.<span />
The volume of the flask would simply be equal to the
volume of the water. And the mass of the water would be the difference after
and before weigh.
mass of water = 489.1 g – 241.3 g
mass of water = 247.8 g
Therefore the volume of water (which is also the volume
of the flask) is:
volume = 247.8 g / (1.00 g/cm^3)
volume = 247.8 cm^3
The total mass of the flash when filled with chloroform
would be:
total mass with chloroform = 241.3 g + 247.8 cm^3 (1.48
g/cm3)
total mass with chloroform = 608.04 g
Answers:
volume = 247.8 cm^3
total mass with chloroform = 608.04 g