Answer:
(A) 28
Explanation:
To solve this problem we use the <em>PV=nRT equation</em>, where:
- P = 800 mmHg ⇒ 800/760 = 1.05 atm
- R = 0.082 atm·L·mol⁻¹·K⁻¹
- T = 25.0 °C ⇒ 25.0 + 273.16 = 298.16 K
We<u> input the data</u>:
- 1.05 atm * 2.00 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 298.16 K
And <u>solve for n</u>:
Now we calculate the gas' mass:
- Gas Mass = (Mass of Container w/ Gas) - (Mass of Empty Container)
- Gas Mass = 1052.4 g - 1050.0 g = 2.4 g
Finally we <u>calculate the unknown gas' molar mas</u>s, using<em> its mass and its number of moles</em>:
- Molar Mass = mass / moles
- Molar Mass = 2.4 g / 0.086 mol = 27.9 g/mol
So the answer is option (A).
Yes the reaction given above does exist
First of all CaCl2 will react with water to form CaO and HCl then it will react with CO2 to form <span>CaCO3
</span>CaCO3 + 2HCl <span>>>></span> CaCl2+CO2+H20
so i conclude it does exist
hope it helps
The particles move faster when more thermal energy is added creating heat.
Answer:
This reaction is exothermic because the system shifted to the left on heating.
Explanation:
2NO₂ (g) ⇌ N₂O₄(g)
Reactant => NO₂ (dark brown in color)
Product => N₂O₄ (colorless)
From the question given above, we were told that when the reaction at equilibrium was moved from room temperature to a higher temperature, the mixture turned dark brown in color.
This simply means that the reaction does not like heat. Hence the reaction is exothermic reaction.
Also, we can see that when the temperature was increased, the reaction turned dark brown in color indicating that the increase in the temperature favors the backward reaction (i.e the equilibrium shift to the left) as NO₂ which is the reactant is dark brown in color. This again indicates that the reaction is exothermic because an increase in the temperature of an exothermic reaction will shift the equilibrium position to the left.
Therefore, we can conclude that:
The reaction is exothermic because the system shifted to the left on heating.