Answer:
Explanation:
6. Where on the graph does adding heat energy NOT raise the temperature?
What is the heat energy DOING if it's not raising the temperature? :its being compressed I believe its vaporizing
7. What is temperature A called? Freezing
8. What is temperature B called? Vaporizing
Answer:
Explanation:
1. Calculate the work
w = - pΔV = -4.3 atm × (43 L - 20 L) = -4.3 × 23 L·atm = -98.9 L·atm
2. Convert litre-atmospheres to joules
The negative sign indicates that the work was done against the surroundings.
Answer:
B. Consists of many cells
Explanation:
Unicellular organisms consist of one singular cell. While multicellular organisms consist of many cells
In an acid-base titration, the neutralization reaction between the acid and base can be measured with either a color indicator or a pH meter. In this experiment, aphenolphthalein<span> color indicator will be </span>used<span>.
</span>Phenolphthalein<span> is colorless in acidic solutions and pink in basic solutions.
Hope this helped
: )</span>
Answer:
- Mass of monobasic sodium phosphate = 1.857 g
- Mass of dibasic sodium phosphate = 1.352 g
Explanation:
<u>The equilibrium that takes place is:</u>
H₂PO₄⁻ ↔ HPO₄⁻² + H⁺ pka= 7.21 (we know this from literature)
To solve this problem we use the Henderson–Hasselbalch (<em>H-H</em>) equation:
pH = pka +
In this case [A⁻] is [HPO₄⁻²], [HA] is [H₂PO₄⁻], pH=7.0, and pka = 7.21
If we use put data in the <em>H-H </em>equation, and solve for [HPO₄⁻²], we're left with:
From the problem, we know that [HPO₄⁻²] + [H₂PO₄⁻] = 0.1 M
We replace the value of [HPO₄⁻²] in this equation:
0.616 * [H₂PO₄⁻] + [H₂PO₄⁻] = 0.1 M
1.616 * [H₂PO₄⁻] = 0.1 M
[H₂PO₄⁻] = 0.0619 M
With the value of [H₂PO₄⁻] we can calculate [HPO₄⁻²]:
[HPO₄⁻²] + 0.0619 M = 0.1 M
[HPO₄⁻²] = 0.0381 M
With the concentrations, the volume and the molecular weights, we can calculate the masses:
- Molecular weight of monobasic sodium phosphate (NaH₂PO₄)= 120 g/mol.
- Molecular weight of dibasic sodium phosphate (Na₂HPO₄)= 142 g/mol.
- mass of NaH₂PO₄ = 0.0619 M * 0.250 L * 120 g/mol = 1.857 g
- mass of Na₂HPO₄ = 0.0381 M * 0.250 L * 142 g/mol = 1.352 g