The strongest of the intermolecular forces are hydrogen bonds
Answer: <u>Four</u>Explanation: Calcium Sulfide is an ionic compound made up of Ca²⁺ and S²⁻.
Ca²⁺ is formed as,
Ca → Ca²⁺ + 2 e⁻
These two electrons are accepte by Sulfur as,
S + 2 e⁻ → S²⁻
So, before accepting 2 electrons S was having six valence electrons, after accepting two electrons from Ca it has 8 electrons which are present in four pairs as shown below,
1 mole=6.02 ×10
8.3 moles=?
8.3×6.02×10=499.66 molecules
therefore ghe no. of molecules = 499.66
There are types of nuclear reaction: nuclear fusion and nuclear fission. The difference is that fusion is a combination of two elements while fission is the breaking up of the subatomic particles of an element creating a new element. The limiting element to this is Iron. Iron-26 is the most stable element. As a result, elements lighter than Fe-26 are generally fusible. This includes hydrogen and helium.
This reaction is common in the stars, most especially the Sun. The energy of the Sun comes from its abundant hydrogen composition which becomes fusible into Helium. This occurs at a temperature of 14 million Kelvin. The nuclear reaction is a not a one-way step process as shown in the picture.
Equation of decomposition of ammonia:
N2+3H2->2NH3
Euilibrium constant:
Kc=(NH3)^2/((N2)((H2)^3))
As concentration of N2=0.000105, H2=0.0000542
so equation will become:
3.7=(NH3)^2/(0.000105)*(0.0000542)^3
NH3=√(3.7*0.000105*(0.0000542)^3)
NH3=7.8×10⁻⁹
So concentration of ammonia will be 7.8×10⁻⁹.