Answer:
The coefficient of kinetic friction between the crate and the floor can be calculated using the formula μ = Ff / N, where Ff is the frictional force, N is the normal force, and μ is the coefficient of kinetic friction.
In this case, the normal force is equal to the weight of the crate, which is 24 kg * 9.8 m/s2 = 235.2 N. The frictional force can be calculated using the formula Ff = μ * N, where μ is the coefficient of kinetic friction and N is the normal force.
If we substitute the values for N and Ff into the formula for the coefficient of kinetic friction, we get:μ = 53 N / 235.2 N = 0.225
Therefore, the coefficient of kinetic friction between the crate and the floor is 0.225.
Answer:
Volcanic Eruptions
Explanation:
The volcano can start showing signs that it may be about to explode.
Answer:
(A) 1.43secs
(B) -2.50m/s^2
Explanation:
A commuter backs her car out of her garage with an acceleration of 1.40m/s^2
(A) When the speed is 2.00m/s then, the time can be calculated as follows
t= Vf-Vo/a
The values given are a= 1.40m/s^2 , Vf= 2.00m/s, Vo= 0
= 2.00-0/1.40
= 2.00/1.40
= 1.43secs
(B) The deceleration when the time is 0.800secs can be calculated as follows
a= Vf-Vo/t
= 0-2.00/0.800
= -2.00/0.800
= -2.50m/s^2
W work
F force
s distance
If F = constant:
W₁ = F·s
If you triple the force and the distance:
W₂ = 3F · 3s = 9 F·s = 9 W₁
All three have the same current, so that is not a factor. Wattage (power) is E*I or i^2 R. The higher the resistance, the more power dissipated. The answer is R3 because it has the highest resistance.
R3 <<<< ===== answer.