Answer:
Force that acted on the body was F = 13 N
Explanation:
If once accelerated, the body covers 60 meters in 6 seconds, then its velocity is 60/6 m/s = 10 m/s
When the force was acting (for 10 seconds) the object accelerated from rest (initial velocity vi = 0) to 10 m/s (its final velocity). therefore we can use the kinematic equation for the velocity in an accelerated motion given by:

which in our case becomes;

and we can solve for the acceleration as:
a = 10/10 m/s^2 = 1 m/s^2
Therefore the force acting on the body, based on Newton's 2nd Law expression: F = m * a is:
F = 13 kg * 1 m/s^2 = 13 N
<span>here's a cheap trick
it would take the same time to accelerate from rest to top speed
as it would take to decelerate from top speed to zero
so
instead of
d = Vi t + 1/2 a t^2 where Vi is positive and a is negative
we'll use
Vi = 0 and a is positive
giving
85 = 0 + 1/2 (0.43) t^2 = 0.215 t^2
t^2 = 395.345
t = 19.88s or 20. s to 2 sig figs
or we ccould find Vi from
Vf*2 = Vi^2 + 2 a d
0 = Vi^2 + 2 (0.43) 85
Vi^2 = 71.4
Vi = 8.45m/s
then
85 = 8.45 t + 1/2 (-0.43) t^2
85 = 8.45 t - 0.215 t^2
0.215 t^2 - 8.45 + 85 = 0
t = 19.65s or 20. s to 2 s.f.(minor difference arises from rounding Vi)
or another cheap trick
when a is constant
Vavg = (Vf + Vi) /2 = 8.45/2 = 4.225
and
d = Vavg t
85 = 4.225 t
t = 20.12 or 20. s to 2 s.f. (minor differences from intermidiate roundings)
anyway you choose you get 20. s</span>
The wavelength of the interfering waves is 3.14 m.
<h3>Calculation:</h3>
The general equation of a standing wave is given by:
y = 2A sin (kx) cos (ωt) ......(1)
The given equation represents the standing wave produced by the interference of two harmonic waves:
y = 3 sin (2x) cos 5t .......(2)
Comparing equations (1) and (2):
k = 2
We know that,
k = 2π/λ
λ = 2π/k
λ = 2 (3.14)/ 2
λ = 3.14 m
Therefore, the wavelength of the interfering waves is 3.14 m.
I understand the question you are looking for is this:
Two harmonic waves traveling in opposite directions interfere to produce a standing wave described by y = 3 sin (2x) cos 5t where x is in m and t is in s. What is the wavelength of the interfering waves?
Learn more about interfering waves here:
brainly.com/question/2910205
#SPJ4