171.0798 M/S
In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s2.
Was this helpful
Answer:
400 g
Explanation:
The computation of the number of grams in the original sample is shown below:
Given that
half-life = 5.26 years
total time of decay = 15.8 years
final amount = 50.0 g
Now based on the above information
number of half-lives past is
= 15.8 ÷ 5.26
= 3 half-lives
Now
3 half-lives = 1 ÷ 8 remains = 50.0 g
So, the number of grams would be
= 50.0 g × 8
= 400 g
Answer:
-75 cm
Explanation:
At l ; F = 350 Hz
At l + 15 cm ; F = 280 Hz
I = 350
I + 15 = 280
280I = 350(I + 15)
280I = 350I + 5250
280I - 350I = 5250
-70I = 5250
I = - 75cm
The length is - 75 cm
Answer: 18.27°
Explanation:
Given
Index of refraction of blue light, n(b) = 1.64
Wavelength of blue light, λ(b) = 440 nm
Index of refraction of red light, n(r) = 1.595
Wavelength of red light, λ(r) = 670 nm
Angle of incident, θ = 30°
Angle of refraction of red light is
θ(r) = sin^-1 [(n(a)* sin θ) / n(r)], where n(a) = index of refraction of air = 1
So that,
θ(r) = sin^-1 [(1 * sin 30) / 1.595]
θ(r) = sin^-1 (0.5 / 1.595)
θ(r) = sin^-1 0.3135
θ(r) = 18.27°