Answer:
The minimum score required for recruitment is 668.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Top 4%
A university plans to recruit students whose scores are in the top 4%. What is the minimum score required for recruitment?
Value of X when Z has a pvalue of 1-0.04 = 0.96. So it is X when Z = 1.75.




Rounded to the nearest whole number, 668
The minimum score required for recruitment is 668.
Answer:
16.32 made in interest
216.32 in total
Step-by-step explanation:
Answer:
There were 45 pies sold in all.
Step-by-step explanation:
10 + 15 = 25
25 + 20 = 45
880
Underline the number in the tens place
look to the right
if number is greater than 5
add 1 to the underlined number
leave the numbers behind the underlined number zero
The answer is 91 toys sold, make
the number ab where a is the 10th digit and b is the first digit. The
value is 10a + b that can expressed as 10 (3) + 4 = 34
Let the price of each item: xy
10x + y
He accidentally reversed the
digits to: 10b + a toys sold at 10y + x rupees per toy. To get use the formula,
he sold 10a + b toys but thought he sold 10b + a toys. The number of toys that
he thought he left over was 72 items more than the actual amount of toys left
over. So he sold 72 more toys than he thought:
10a + b =10b + a +72
9a = 9b + 72
a = b + 8
The only numbers that could work
are a = 9 and b = 1 since a and b each have to be 1 digit numbers. He reversed
the digits and thought he sold 19 toys. So the actual number of toys sold was
10a + b = 10 (9) + 1 = 91 toys sold. By checking, he sold 91 – 19 = 72 toys
more than the amount that he though the sold. As a result, the number of toys
he thought he left over was 72 more than the actual amount left over as was
stated in the question.
<span />