Answer:
Serine will be on the exterior of the globular protein while leucine on the interior of the globular proteins
Explanation:
The nature or solubility of the side cham determines the poition of amino acid on the globular protein and it is either hydrophilic or hydrophobic.
Serine is an hydrophilic amino acid and so it is position on the surface of the globular protein (Exterior)
While Leucine side chain is hydrophobic in nature is positioned on the interior of the globular protein.
<u>Answer:</u> The above reaction is non-spontaneous.
<u>Explanation:</u>
For the given chemical reaction:

Here, nickel is getting reduced because it is gaining electrons and iron is getting oxidized because it is loosing electrons.
We know that:

Substance getting oxidized always act as anode and the one getting reduced always act as cathode.
To calculate the
of the reaction, we use the equation:


Relationship between standard Gibbs free energy and standard electrode potential follows:

As, the standard electrode potential of the cell is coming out to be negative for the above cell. Thus, the standard Gibbs free energy change of the reaction will become positive making the reaction non-spontaneous.
Hence, the above reaction is non-spontaneous.
Answer:
Cell growth usually refers to cell proliferation, the increase in cell numbers that occurs through repeated cell division. Cell growth can also refer to the enlargement of cell volume, which can take place in the absence of cell division. As living things grow, some cells die or become damaged and need replacements. Some single-celled organisms use a type of mitosis as their only form of reproduction. In multicellular organisms, cell division allows individuals to grow and change by expanding the number of total cells.
Hope this helps!!!
Answer:
3.6 × 10⁻⁵ M
Explanation:
Ergosterol has a maximum absorbance at λ = 282 nm. The absorbance of an analyte is related to its concentration through the Beer-Lambert's law.
A = ε × <em>l</em> × c
where,
A: absorbance
ε: molar absorptivity
<em>l</em>: optical path length
c; molar concentration
c = A / ε × <em>l </em>= 0.43 / (11,900 M⁻¹cm⁻¹) × 1.00 cm = 3.6 × 10⁻⁵ M