<span>H2CO3 <---> H+ + HCO3-
NaHCO3 <---> Na+ + HCO3-
When acid is added in the buffer, the excess H+ of that acid reacts with HCO3- to form H2CO3, and due to this NaHCO3 dissociates into HCO3- to attain the equilibrium. and hence there is no net effect of H+ due to pH remain almost constant.
when a base is added to the buffer, the OH- ion of base react eith H+ ion present in buffer, then to attain equilibrium of H+ ion, the H2CO3 dissociates to produce H+ ion, but now there is the excess of HCO3- due to which Na+ ion react with them to attain equilibrium of HCO3-. hence there is again no net change in H+ ion due to which pH remain constant.....</span>
Answer is: intramolecular attractions are stronger.
Intramolecular attractions are the forces between atoms in molecule.
There are several types of intramolecular forces: covalent bonds, ionic bonds.
Intermolecular forces are the forces between molecules. The stronger are intermolecular forces, the higher is boiling point of compound, because more energy is needed to break interaction between molecules.
There are several types of intermolecular forces: hydrogen bonding, ion-induced dipole forces, ion-dipole forces andvan der Waals forces.
Hydrogen bonds are approximately 5% of the bond strength of covalent C-C or C-H bonds.
Hydrogen bonds strength in water is approximately 20 kJ/mol, strenght of carbon-carbon bond is approximately 350 kJ/mol and strengh of carbon-hydrogen bond is approximately 340 kJ/mol.
20 kJ/350 kJ = 0.057 = 5.7 %.
Answer:C
Explanation: ice molecules are solid
Answer:
A. move materials through the body
Explanation:
The blood circulatory system (cardiovascular system) transports materials and delivers nutrients and oxygen to all cells in the body.