For an aqueous solution of MgBr2, a freezing point depression occurs due to the rules of colligative properties. Since MgBr2 is an ionic compound, it acts a strong electrolyte; thus, dissociating completely in an aqueous solution. For the equation:
ΔTf<span> = (K</span>f)(<span>m)(i)
</span>where:
ΔTf = change in freezing point = (Ti - Tf)
Ti = freezing point of pure water = 0 celsius
Tf = freezing point of water with solute = ?
Kf = freezing point depression constant = 1.86 celsius-kg/mole (for water)
m = molality of solution (mol solute/kg solvent) = ?
i = ions in solution = 3
Computing for molality:
Molar mass of MgBr2 = 184.113 g/mol
m = 10.5g MgBr2 / 184.113/ 0.2 kg water = 0.285 mol/kg
For the problem,
ΔTf = (Kf)(m)(i) = 1.86(0.285)(3) = 1.59 = Ti - Tf = 0 - Tf
Tf = -1.59 celsius
To convert 3 mol H2O to grams, just multiply by the molar mass of H2O.
<span>3 mol H2O * 18 g H2O / 1 mol H2O = 54 g H2O
Hope this helped.</span>
Since there is one carbon with 4 Fluorines attached to it, and both compounds are no metals, we use the covalent method for naming,
Here we ignore the prefix for the first element if it is 1. Mono. Then pay attention to the second one, it would be tetra, because tetra means 4. Here there are 4 fluorines.
Drop ine and place ide
CF4 = carbon tetrafluoride.