Answer:
59.8%
Explanation:
First find the Mr of manganese (III) nitrate.
Mr of Mn(NO₃)₃ = 54.9 + (14 × 3) + (16 × 3 × 3) = <u>240.9</u>
Since we have to find the percentage composition of oxygen, we need to find the Mr of oxygen in the compound, which is:
Mr of (O₃)₃ = (16 × 3) × 3 = <u>144</u>
Now we can find percentage composition / percentage by mass of oxygen.
% composition =
× 100
% composition =
× 100 = <u>59.776%</u>
∴ % compostion of oxygen in maganese(III)nitrate is 59.8% (to 3 significant figures).
A molecular size affects the rate of evaporation when the larger the intermolecular forces in a compound, the slower the evaporation rate and this correlates with temperature change.
Molecular size seems to have an effect on evaporation rates in that the larger a molecule gets or grows from a base chemical formula, its evaporation rate will get slower.
<h3>What is the molecular size?</h3>
This is a measure of the area a molecule occupies in three-dimensional space as this relates to the physical size of an individual molecule.
Hence, we can see that a molecular size affects the rate of evaporation the larger the forces, the lower the rate.
Read more about<em> molecular size</em> here:
brainly.com/question/16616599
#SPJ1
Answer:
E₁ ≅ 28.96 kJ/mol
Explanation:
Given that:
The activation energy of a certain uncatalyzed biochemical reaction is 50.0 kJ/mol,
Let the activation energy for a catalyzed biochemical reaction = E₁
E₁ = ??? (unknown)
Let the activation energy for an uncatalyzed biochemical reaction = E₂
E₂ = 50.0 kJ/mol
= 50,000 J/mol
Temperature (T) = 37°C
= (37+273.15)K
= 310.15K
Rate constant (R) = 8.314 J/mol/k
Also, let the constant rate for the catalyzed biochemical reaction = K₁
let the constant rate for the uncatalyzed biochemical reaction = K₂
If the rate constant for the reaction increases by a factor of 3.50 × 10³ as compared with the uncatalyzed reaction, That implies that:
K₁ = 3.50 × 10³
K₂ = 1
Now, to calculate the activation energy for the catalyzed reaction going by the following above parameter;
we can use the formula for Arrhenius equation;

If
&





E₁ ≅ 28.96 kJ/mol
∴ the activation energy for a catalyzed biochemical reaction (E₁) = 28.96 kJ/mol