Gamma rays
Explanation:
Every member of the electromagnetic radiation has commensurate amount of energy, wavelength and frequencies.
The electromagnetic waves with the shortest wavelengths and the highest frequencies are the gamma rays.
- Gamma rays also are the most energetic electromagnetic radiation.
- The short wavelength of gamma rays suggests that more waves passes with times.
- It's high frequency shows that a high amount of wave passes through a point at each passing of time.
- These factors combines to give its high energy. Energy of an electromagnetic radiation is a factor of its wavelength and frequency.
- Gamma rays are ionizing radiations which causes ionization of gas molecules.
Learn more:
Radiation brainly.com/question/10726711
#learnwithBrainly
Answer: V = 33.9 L
Explanation: We will use Charles Law to solve for the new volume.
Charles Law is expressed in the following formula. Temperatures must be converted in Kelvin.
V1 / T1 = V2 / T2 then derive for V2
V2 = V1 T2 / T1
= 35 L ( 308 K ) / 318 K
= 33.9 L
Answer:
A. an equal and opposite reaction force
Explanation:
This means that there is a natural reaction of force
Answer:
E
Explanation:
This is because all steps from A-D are important to obtain an accurate result
91 grams of sodium azide required to decompose and produce 2.104 moles of nitrogen.
Explanation:
2NaN3======2Na+3N2
This is the balanced equation for the decomposition and production of sodium azide required to produce nitrogen.
From the equation:
2 moles of NaNO3 will undergo decomposition to produce 3 moles of nitrogen.
In the question moles of nitrogen produced is given as 2.104 moles
so,
From the stoichiometry,
3N2/2NaN3=2.104/x
= 3/2=2.104/x
3x= 2*2.104
= 1.4 moles
So, 1.4 moles of sodium azide will be required to decompose to produce 2.104 moles of nitrogen.
From the formula
no of moles=mass/atomic mass
mass=no of moles*atomic mass
1.4*65
= 91 grams of sodium azide required to decompose and produce 2.104 moles of nitrogen.