Answer:
i. -4m
ii. 20m
Explanation:
The car travels 8m to the east, then travels 12m to the west which is the opposite of the east. Going west, the car travels 8m back to the origin point and then another 4m due west to make 12m. The displacement from the origin point is -4 (the negative sign shows the direction because displacement is a vector quantity)
Total distance = 8m going east + 8m back to origin + 4m west = 20m
When a balloon is rubbed with human hair, the balloon acquires an excess static charge. This implies that some materials can give up electrons more readily than others.
Answer: Option C
<u>Explanation:</u>
We know that charges can neither be created nor be destroyed by law of conservation of charges. So when we rub two objects, it is natural to have a transfer of charges. But the charges which get transferred may be negligible in most of the cases leading to no significant observations.
But for some materials, like when we rubbed a balloon with human hair, we observed clouding of excess static charge on the balloon surface. This indicates that hair can easily give up electrons to balloon leading to clouding of excess static charge on it.
B) <span> It is practical because a top-loading machine uses much more water than a front-loading machine.
Front-loading washing machines are able to better conserve water by automatically maintaining the same water level throughout the wash, while top-loading washing machines generally begin the cycle by filling up the barrel to a certain point. </span>
The normal force is the supporting force that is exerted on an object that is in contact with another stable object.
Answer: Option C
<u>Explanation:
</u>
Normal force is forward or upward pushing force acting on an object. Mostly the normal force acts as supporting force exerted on the object by the neighbouring stable object with which the object in question is in contact. So normal force falls under the category of contact forces.
Generally, normal force will be acting to support the weight of any object placed on another object. The best examples of normal forces are the weight of the book supported by table or by the pushing force of the wall on the person leaning on the wall.