Iridium-192 is used in cancer treatment, a small cylindrical piece of 192 Ir, 0.6 mm in diameter (0.3mm radius) and 3.5 mm long, is surgically inserted into the tumor. if the density of iridium is 22.42 g/cm3, how many iridium atoms are present in the sample?
Let us start by computing for the volume of the cylinder. V = π(r^2)*h where r and h are the radius and height of the cylinder, respectively. Let's convert all given dimensions to cm first. Radius = 0.03 cm, height is 0.35cm long.
V = π * (0.03cm)^2 * 0.35 cm = 9.896*10^-4 cm^3
Now we have the volume of 192-Ir, let's use the density provided to get it's mass, and once we have the mass let's use the molar mass to get the amount of moles. After getting the amount of moles, we use Avogadro's number to convert moles into number of atoms. See the calculation below and see if all units "cancel":
9.896*10^-4 cm^3 * (22.42 g/cm3) * (1 mole / 191.963 g) * (6.022x10^23 atoms /mole)
= 6.96 x 10^19 atoms of Ir-122 are present.
Answer:
they are big chunks of the earth that are constantly vibrating
Explanation:
Answer:
is 1155 kJ
Explanation:
According to first law of thermodynamics:
=Change in internal energy
q = heat absorbed or released
w = work done or by the system
w = work done by the system=
{Work done on the system is positive as the final volume is lesser than initial volume}
w =
(1kcal=4.184 kJ)
q = +1.1 MJ = 1100 kJ (1MJ=1000kJ) {Heat absorbed by the system is positive}
Thus
is 1155 kJ
Answer:
observe if it reacts with acids
Explanation:
Because whether it reacts is determined by its chemical properties