3600 years.
Since 65% of the carbon-14 is remaining, we need to get the logarithm to base 2 of 0.65 to determine how many half lives have expired. So: log(0.65)/log(2) = -0.187086643/0.301029996 = -0.621488377
So we know that 0.621488377 half-lives has gone by to the bone sample. Now we just need to multiply by the half-life of carbon-14 which is 5730 years. So: 0.621488377 * 5730 = 3561.128399 years. Rounding to the nearest 100 years gives us 3600 years.
Answer:
-
Explanation:
As the piece of metal skitters across the surface of the water in a beaker and — particularly in the case of potassium — it appears to catch fire, it is not obvious that the explanation for both phenomena lies in the production of hydrogen gas.
True. light is particles. photons, however are waves.
Answer: The equilibrium concentration of
will be much smaller than the equilibrium concentration of
, because Keq<<1
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
K is the constant of a certain reaction when it is in equilibrium, while Q is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
For the given chemical reaction:

The expression for
is written as:
![K=\frac{[H_3O^+]\times [BrO^-]}{[HBrO]}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5Ctimes%20%5BBrO%5E-%5D%7D%7B%5BHBrO%5D%7D)
Concentration of pure solids and liquids is taken as 1.

Thus as
, That means the concentration of products is less as the reaction does not proceed much towards the forward direction.