So,
Our conceptual plan is as follows:
g AlCl3 --> mol AlCl3 --> mol H2 --> g H2

Hope this helps!
Answer:
"Avogadro's law is an experimental gas law relating the volume of a gas to the amount of substance of gas present. The law is a specific case of the ideal gas law. A modern statement is: Avogadro's law states that "equal volumes of all gases, at the same temperature and pressure, have the same number of molecules."
Answer:
Theoretical yield of the reaction = 34 g
Excess reactant is hydrogen
Limiting reactant is nitrogen
Explanation:
Given there is 100 g of nitrogen and 100 g of hydrogen
Number of moles of nitrogen = 100 ÷ 28 = 3·57
Number of moles of hydrogen = 100 ÷ 2 = 50
Reaction between nitrogen and hydrogen yields ammonia according to the following chemical equation
N2 + 3H2 → 2NH3
From the above chemical equation for every mole of nitrogen that reacts, 3 moles of hydrogen will be required and 2 moles of ammonia will be formed
Now we have 3·57 moles of nitrogen and therefore we require 3 × 3·57 moles of hydrogen
⇒ We require 10·71 moles of hydrogen
But we have 50 moles of hydrogen
∴ Limiting reactant is nitrogen and excess reactant is hydrogen
From the balanced chemical equation the yield will be 2 × 3·57 moles of ammonia
Molecular weight of ammonia = 17 g
∴ Theoretical yield of the reaction = 2 × 3·57 × 17 = 121·38 g
This sounds very much like a chicken-egg problem.
The first thing that formed must be hydrogen nuclei. The only other alternative is that the atom was created instantly, and the nuclei sprang forth at the same time as the atom, meaning that neither was technically first. The logic is that an atom can’t form without a nucleus, but it theoretically could be created instantly.