Answer: it’s called a saw or see saw
Explanation: it works by cutting a tree, wood, tile, etc.
Answer: check the engines i swear if ur talking about an actual bike im gonna be so embarrassed lma0
Answer:
yes it is possible
Explanation:
dislocation are if two type edge and screw dislocations
edge dislocation is a defect where an extra half plane is inside the lattice.
and screw dislocation is one in which can be assumed as the first half of the crystal slips over another.
These dislocation can coexist together where the line direction and burger vectors are neither parallel nor perpendicular then at that condition both dislocation screw and edge will coexist
To develop the problem it is necessary to apply the concepts related to the ideal gas law, mass flow rate and total enthalpy.
The gas ideal law is given as,

Where,
P = Pressure
V = Volume
m = mass
R = Gas Constant
T = Temperature
Our data are given by




Note that the pressure to 38°C is 0.06626 bar
PART A) Using the ideal gas equation to calculate the mass flow,




Therfore the mass flow rate at which water condenses, then

Re-arrange to find 



PART B) Enthalpy is given by definition as,

Where,
= Enthalpy of dry air
= Enthalpy of water vapor
Replacing with our values we have that



In the conversion system 1 ton is equal to 210kJ / min


The cooling requeriment in tons of cooling is 437.2.
Answer:
The diameter is 50mm
Explanation:
The answer is in two stages. At first the torque (or twisting moment) acting on the shaft and needed to transmit the power needs to be calculated. Then the diameter of the shaft can be obtained using another equation that involves the torque obtained above.
T=(P×60)/(2×pi×N)
T is the Torque
P is the the power to be transmitted by the shaft; 40kW or 40×10³W
pi=3.142
N is the speed of the shaft; 250rpm
T=(40×10³×60)/(2×3.142×250)
T=1527.689Nm
Diameter of a shaft can be obtained from the formula
T=(pi × SS ×d³)/16
Where
SS is the allowable shear stress; 70MPa or 70×10⁶Pa
d is the diameter of the shaft
Making d the subject of the formula
d= cubroot[(T×16)/(pi×SS)]
d=cubroot[(1527.689×16)/(3.142×70×10⁶)]
d=0.04808m or 48.1mm approx 50mm