Answer:
a) Please see attached copy below
b) 0.39KJ
c) 20.9‰
Explanation:
The three process of an air-standard cycle are described.
Assumptions
1. The air-standard assumptions are applicable.
2. Kinetic and potential energy negligible.
3. Air in an ideal gas with a constant specific heats.
Properties:
The properties of air are gotten from the steam table.
b) T₁=290K ⇒ u₁=206.91 kj/kg, h₁=290.16 kj/kg.
P₂V₂/T₂=P₁V₁/T₁⇒ T₂=P₂T₁/P₁ = 380/95(290K)= 1160K
T₃=T₂(P₃/P₂)⁽k₋1⁾/k =(1160K)(95/380)⁽⁰°⁴/₁.₄⁾ =780.6K
Qin=m(u₂₋u₁)=mCv(T₂-T₁)
=0.003kg×(0.718kj/kg.k)(1160-290)K= 1.87KJ
Qout=m(h₃₋h₁)=mCp(T₃₋T₁)
=0.003KG×(1.005kj/kg.k(780.6-290)K= 1.48KJ
Wnet, out= Qin-Qout = (1.87-1.48)KJ =0.39KJ
c)ηth= Wnet/W₍in₎ =0.39KJ/1.87KJ = 20.9‰
Answer:
V1=5<u>ft3</u>
<u>V2=2ft3</u>
n=1.377
Explanation:
PART A:
the volume of each state is obtained by multiplying the mass by the specific volume in each state
V=volume
v=especific volume
m=mass
V=mv
state 1
V1=m.v1
V1=4lb*1.25ft3/lb=5<u>ft3</u>
state 2
V2=m.v2
V2=4lb*0.5ft3/lb= <u> 2ft3</u>
PART B:
since the PV ^ n is constant we can equal the equations of state 1 and state 2
P1V1^n=P2V2^n
P1/P2=(V2/V1)^n
ln(P1/P2)=n . ln (V2/V1)
n=ln(P1/P2)/ ln (V2/V1)
n=ln(15/53)/ ln (2/5)
n=1.377
Answer:
See explanations for step by step procedures to get answer.
Explanation:
Given that;
Determine the deflection at the center of the beam. Express your answer in terms of some or all of the variables LLL, EEE, III, and M0M0M_0. Enter positive value if the deflection is upward and negative value if the deflection is downward.
Answer:
total width bandwidth = 8kHz
Explanation:
given data
transmitter operating = 3.9 MHz
frequencies up to = 4 kHz
solution
we get here upper side frequencies that is
upper side frequencies = 3.9 ×
+ 4 × 10³
upper side frequencies = 3.904 MHz
and
now we get lower side frequencies that is
lower side frequencies = 3.9 ×
- 4 × 10³
lower side frequencies = 3.896 MHz
and now we get total width bandwidth
total width bandwidth = upper side frequencies - lower side frequencies
total width bandwidth = 8kHz