Answer:
q₀ = 350,740.2885 N/m
Explanation:
Given

σ = 120 MPa = 120*10⁶ Pa

We can see the pic shown in order to understand the question.
We apply
∑MB = 0 (Counterclockwise is the positive rotation direction)
⇒ - Av*L + (q₀*L/2)*(L/3) = 0
⇒ Av = q₀*L/6 (↑)
Then, we apply

Then, we can get the maximum bending moment as follows

then we get

We get the inertia as follows

We use the formula
σ = M*y/I
⇒ M = σ*I/y
where

If M = Mmax, we have

Answer:
58.44 g/mol The Molarity of this concentration is 0.154 molar
Explanation:
the molar mass of NaCl is 58.44 g/mol,
0.9 % is the same thing as 0.9g of NaCl , so this means that 100 ml's of physiological saline contains 0.9 g of NaCl. One liter of physiological saline must contain 9 g of NaCl. We can determine the molarity of a physiological saline solution by dividing 9 g by 58 g... since we have 9 g of NaCl in a liter of physiological saline, but we have 58 grams of NaCl in a mole of NaCl. When we divide 9 g by 58 g, we find that physiological saline contains 0.154 moles of NaCl per liter. That means that physiological saline (0.9% NaCl) has a molarity of 0.154 molar. We can either express this as 0.154 M or 154 millimolar (154 mM).
Well, I do know that polarity affects the voltage.