Answer:
At a deceleration of 60g, or 60 times the acceleration due to gravity a person will travel a distance of 0.38 m before coing to a complete stop
Explanation:
The maximum acceleration of the airbag = 60 g, and the duration of the acceleration = 36 ms or 36/1000 s or 0.036 s
To find out how far (in meters) does a person travel in coming to a complete stop in 36 ms at a constant acceleration of 60g
we write out the equation of motion thus.
S = ut + 0.5at²
wgere
S = distance to come to complete stop
u = final velocoty = 0 m/s
a = acceleration = 60g = 60 × 9.81
t = time = 36 ms
as can be seen, the above equation calls up the given variable as a function of the required variable thus
S = 0×0.036 + 0.5×60×9.81×0.036² = 0.38 m
At 60g, a person will travel a distance of 0.38 m before coing to a complete stop
Answer:
Conservation of angular momentum
Explanation:
When the objects spread in universe after big bang, because of the tremendous force , they gained angular momentum and started to rotate. Since, then the object continue to rotate on their axis because of conservation of angular momentum. In vacuum of space there no other forces that can stop these rotation, therefore, they continue to rotate.
All that business about the crane and the rope and the falling
is only there to confuse us.
The piano ended up 5 meters above the ground.
Potential energy = (mass) (gravity) (height)
= (200 kg) (9.81 m/s²) (5 m)
= (200 · 9.81 · 5) (kg-m²/s²)
= 9,810 joules .
Answer:
1 × 10⁶ N/C
Explanation:
The magnitude of the electric field between the membrane = surface density / permittivity of free space = 10 ⁻⁵C/ m² / (8.85 × 10⁻¹²N⁻¹m⁻²C²) = 1.13 × 10⁶ N/C approx 1 × 10⁶ N/C