Explanation:
the answer is true because I had this question and got it right
Answer:
ΔH°(f) = -110.5 Kj/mole (exothermic)
Explanation:
C + 1/2O₂ => CO
This is asking for the 'Standard Heat of Formation (ΔH°(f)* for carbon monoxide (CO). Values for many compounds can be found in the appendix of most college general chemistry text books. From Ebbing & Gammon, 11th edition, General Chemistry, Appendix C, page 8A.
*Standard Heat of Formation by definition is the heat gained or lost on formation of a substance (compound) from its basic elements in standard state.
The ΔH°(f) values as indicated are found in the appendix of most college chemistry texts. By choosing any compound, one can determine the standard heat of formation equation for the substance of interest. For example, consider Magnesium Carbonate; MgCO₃(s).The basic standard states of each element is found in the Appendix on Thermodynamic Properties for Substances at 25°C & 1 atm. having ΔH°(f) values = 0.00 Kj/mole. All elements in standard state have a 0 Kj/mol. See appendix and note that under the ΔH°(f) symbol some substances have 0.00 Kj/mol values. The associated element will be in basic standard state,
Standard Heat of Formation Equation for formation of Magnesium Carbonate;
Mg°(s) + C°(gpt)* + 3/2O₂(g) => MgCO₃(s) ; ΔH°(f) = -1111.7 Kj/mole
* gpt => graphite
Explanation is in a file
bit.
ly/3a8Nt8n
Answer: 1.10x10²³ atoms of C
110202600000000000000000 atoms C
Explanation:The solution process is shown below.
0.183 mole C x 6.022x10²³ atoms C / 1 mole C
= 1.10x10²³ atoms C
or 110202600000000000000000 atoms C