Answer:
2.9 grams.
Explanation:
- From the balanced reaction:
<em>Mg + 1/2O₂ → MgO,</em>
1.0 mole of Mg reacts with 0.5 mole of oxygen to produce 1.0 mole of MgO.
- We need to calculate the no. of moles of (1.8 g) of Mg and (6.0 g) of oxygen:
no. of moles of Mg = mass/molar mass = (1.8 g)/(24.3 g/mol) = 0.074 mol.
no. of moles of O₂ = mass/molar mass = (6.0 g)/(16.0 g/mol) = 0.375 mol.
<em>So. 0.074 mol of Mg reacts completely with (0.074/2 = 0.037 mol) of O₂ which be in excess.</em>
<em></em>
<em><u>Using cross multiplication:</u></em>
1.0 mole of Mg produce → 1.0 mol of MgO.
∴ 0.074 mol of Mg produce → 0.074 mol of MgO.
<em>∴ The amount of MgO produced = no. of moles x molar mass </em>= (0.074 mol)(40.3 g/mol) = <em>2.98 g.</em>
You will have divided 50200 by 1000000 which 0.0502
Answer:
<h2>ignore your body being cold</h2>
Hope it helps
The rate of entropy change:
The rate of entropy change of the working fluid during the heat addition process is 3 kW/K
What is the Carnot cycle?
- The Carnot Cycle is a thermodynamic cycle made up of reversible isothermal expansion, adiabatic expansion, isothermal compression, and adiabatic compression processes in succession.
- The ratio of the heat absorbed to the temperature at which the heat was absorbed determines the change in entropy.
The entropy of a system:
The rate of heat addition is expressed as,
Q = 
The entropy of a system is a measure of how disorderly a system is getting. The rate of entropy generation during heat addition is,

Calculation:
<u>Given:</u>
= 400K
= 1600K
W = 3600 kW
Put all the values in the above equation, and we get,
=
= 3 kW/K
The rate of entropy change is 3 kW/K
Learn more about the Carnot cycle here,
brainly.com/question/13002075
#SPJ4