1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mashcka [7]
2 years ago
11

Can someone answer all three of theses plzzzzzzzzzzz

Physics
1 answer:
masha68 [24]2 years ago
5 0

Answer:

There's 3 questions there and that's not fair

Explanation:

You might be interested in
Fariza wears a red hat in her school play. On stage, she is lit by a spotlight shining only green light. When our eyes receive n
FromTheMoon [43]

Answer:It's how the color mixes together . Red and green both makes a dark color

Explanation:

5 0
3 years ago
A 1kg cart slams into a stationary 1kg cart at 2 m/s. The carts stick together and move forward at a speed of 1 m/sl. Determine
finlep [7]

Answer:

No, it is not conserved

Explanation:

Let's calculate the total kinetic energy before the collision and compare it with the total kinetic energy after the collision.

The total kinetic energy before the collision is:

K_i = K_1 + K_2 = \frac{1}{2}mv_1^2 + \frac{1}{2}mv_2^2=\frac{1}{2}(1 kg)(2 m/s)^2+\frac{1}{2}(1 kg)(0)^2=2 J

where m1 = m2 = 1 kg are the masses of the two carts, v1=2 m/s is the speed of the first cart, and where v2=0 is the speed of the second cart, which is zero because it is stationary.

After the collision, the two carts stick together with same speed v=1 m/s; their total kinetic energy is

K_f = \frac{1}{2}(m_1+m_2)v^2=\frac{1}{2}(1 kg+1kg)(1 m/s)^2=1 J

So, we see that the kinetic energy was not conserved, because the initial kinetic energy was 2 J while the final kinetic energy is 1 J. This means that this is an inelastic collision, in which only the total momentum is conserved. This loss of kinetic energy does not violate the law of conservation of energy: in fact, the energy lost has simply been converted into another form of energy, such as heat, during the collision.

3 0
3 years ago
This is physics 11th grade and a homework question I don’t understand how to do this or what the question is asking me
Alexxx [7]

a) Frequency is the number of complete oscillations per second. Looking at the graph, there are 9 complete oscillations in 5 seconds. Thus,

Frequency = 9/5 = 1.8 oscillations per second

Frequency = 1.8 Hz

Period = 1/frequency = 1/1.8

Period = 0.056 s

b) When we differenctiate displacement with respect to time, the result is velocity.

Recall, period = 1/f = 5/9 cycles

1/4 cycle behind = 1/4 x 5/9 = 5/36

It is delayed with 5/36 sec with respect to displacement.

5/36 sec = 0.139 sec

Acceleration = first derivative of velocity = second derivative of displacement = 1/4 cycle behind velocity = 1/2 cycle behind displacement =

5/36 = 0.139 sec delayed with respect to velocity

= 5/18 = 0.2777 secs delayed with respect to displacement

Thus, the number of seconds out of phase with the displacements is 0.278 seconds

c) The formula for calculating the period of an ideal pendulum anywhere is

T = 2π√length/local gravity). We would calculate the local gravity.

From the information given,

length = 0.2

T = P = 5/9

Thus,

5/9 = 2π√0.2/local gravity)

(5/9)/2π = √0.2/local gravity

Square both sides. It becomes

[(5/9)/2π]^2 = 0.2/local gravity

local gravity = 0.2/[(5/9)/2π]^2

local gravity = 25.56 m/s^2

Thus,

acceleration due to gravity = 25.56 m/s^2

Recall, earth's gravity = 9.8 m/s^2

number of g forces = 25.56/9.8

number of g forces = 2.61

6 0
1 year ago
The type of bond formed by shared electrons is covalent, ionic, or metallic
loris [4]
I believe the answer in Covalent Bond.
7 0
3 years ago
Read 2 more answers
While running at a constant velocity, how should you throw a ball with respect to you so that you can catch it yourself?
timurjin [86]
You are running at constant velocity in the x direction, and based on the 2D definition of projectile motion, Vx=Vxo. In other words, your velocity in the x direction is equal to the starting velocity in the x direction. Let's say the total distance in the x direction that you run to catch your own ball is D (assuming you have actual values for Vx and D). You can then use the range equation, D= (2VoxVoy)/g, to find the initial y velocity, Voy. g is gravitational acceleration, -9.8m/s^2. Now you know how far to run (D), where you will catch the ball (xo+D), and the initial x and y velocities you should be throwing the ball at, but to find the initial velocity vector itself (x and y are only the components), you use the pythagorean theorem to solve for the hypotenuse. Because you know all three sides of the triangle, you can also solve for the angle you should throw the ball at, as that is simply arctan(y/x). 
5 0
3 years ago
Other questions:
  • The tenancy of a moving object to continue moving in a strait line or a stationary object to remain in place is called
    13·1 answer
  • Match each item to its best description.
    6·2 answers
  • A 1000 kg car is rolling slowly across a level surface at 1m/s, heading toward a group of small innocent children.
    8·2 answers
  • write down the total momentum for two marbles of mass,m, both moving at velocity, v. What is the kinetic energy of the system.
    14·2 answers
  • Increasing which of the following would increase the magnetic force between the permanent magnet and the coil? A. Transformer B.
    5·1 answer
  • Ann and Beth are measuring mass of an object, Ann reports a mass of 6 g while Beth obtains 6.0 g what are the range of uncertain
    11·1 answer
  • How old is a bone if it still has 50% of its carbon-14 content?
    9·1 answer
  • My teacher ask me to slove this question please help me.
    11·1 answer
  • A net force must be acting when an object Choose one or more: A. changes direction but not speed. B. changes both speed and dire
    8·1 answer
  • sports photographers often use large aperture, long focal length lenses. what limitations do these lenses impose on the photogra
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!