Answer:
First, the microwaves transmit kinetic energy to the water molecules of the food, heating the water molecules. Only, those that are not very deep into the food.
Second, the hot water molecules transmit heat by conduction to the other parts of the food.
Explanation:
1) Microwaves are a form of electromagnetic radiation. The same as any wave, they carry energy.
2) The wave length of microwaves are in the range of 0.001 mm to 1 m (shorter than radio waves and longer than infrared)
3) The microwaves of an oven, used to heat food, have a wave length aroun 12 cm.
4) The microwaves transmit energy to the water molecules in the food, by increasing the kinetic energy of water molecules. As result, the water molecules get hotter. Microwaves only penetrate about 1 cm inside the food (a potato for example) and from that the heat is transferred by conduction to the inner parts of the food.
Answer:
we will except an increase in the polarity of the system and this will cause the Non-polar spot to be near the solvent front, while the polar spot will run at an approximate speed of 0.5 Rf
Explanation:
when we run a TLC plate in a 50/50 mixture of hexanes and ethyl acetate we will except an increase in the polarity of the system and this will cause the Non-polar spot to be near the solvent front, while the polar spot will run at an approximate speed of 0.5 Rf
The speed of the polar spot depends largely on the level of polarity, an increase in the polarity will see both spots of Neat hexane run when we run a TLC plate in a 50/50 mixture of hexanes and ethyl acetate
Answer:
H2
Explanation:
Critical temperature is the temperature above which gas cannot be liquefied, regardless of the pressure applied.
Critical temperature directly depends on the force of attraction between atoms, it means stronger the force of higher will be the critical temperature. So, from the given options H2 should have the highest critical temperature because of high attractive forces due to H bonding.
Hence, the correct option is H2.
In a branched chain of amino acids
Yes because what other else can a scientist have