Answer:
The sedimentary rock limestone which contains carbonate mineral Calcite and the metamorphic rocks which contain carbonate mineral Aragonite are the examples of rocks which react strongly with hydrochloric acid.
Explanation:
Rocks are naturally occurring structures formed on the Earth's crust and are composed of aggregate minerals. Classification of rocks: Igneous rocks - formed by cooling of magma on Earth's crust or seabed (basalts, gabbros, granite, etc), sedimentary rocks - formed over time by the accumulation of sediments from the weathering of existing rocks or fragments of minerals and organisms (mudstone, sandstone, shale, limestone, dolostone, siltstone, etc) and metamorphic rocks - transformed rocks formed from the existing rocks that are subjected to large pressures and temperatures (schists, gneiss, marble, etc).
The carbonate minerals like calcite, dolomite, aragonite, etc react with hydrochloric acid and release carbon dioxide gas bubbles. Calcite (calcium carbonate), which is found in igneous, metamorphic, and sedimentary rocks in a varying proportion reacts strongly with hydrochloric acid. So, the sedimentary rock Limestone which mainly contains calcite react strongly with the acid while Dolostone which mainly contains dolomite (calcium magnesium carbonate) reacts less vigorously. Another carbonate mineral aragonite, found in metamorphic rocks also reacts strongly with hydrochloric acid.
Answer:
All of the genes controlling the traits behaved as if they were located on different chromosomes.
Explanation:
Mendel's experiments with pea plants lead to two principles:
- Law of segregation which states that the pair of alleles (for any trait) of each parent separate, meaning that one allele passes from father and another from mother to an offspring.
- Law of independent assortment which states that different pairs of alleles (for different traits) are passed to offspring independently of each other (traits are located on different chromosomes).
It regulates on/off like a light switch