1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TEA [102]
3 years ago
13

A student pushes a laptop cart down the hallway by applying 20 Newtons force. The student pushes it 10 meters and

Physics
1 answer:
noname [10]3 years ago
4 0

Answer:

None.

Explanation:

  • By definition, work is a process that it happens when an applied force

        causes an object to change its position, i.e. to have a displacement.

        Since the laptop cart is at rest while he stops at the water fountain, no  

       net work done is on the laptop cart.

You might be interested in
Earning Goal: To be able to calculate work done by a constant force directed at different angles relative to displacement
lana [24]

Answer:

the work done by the 30N force is 4156.92 J.

For this problem, they don´t ask you to determine the work of the total force applied in the block. They only want the work done for the force of 30N, with an angle of 30º respectively of the displacement and a traveled distance of 160m. So:

W=F·s·cos(α)=30N·160m·cos(30º)=4156.92J

8 0
3 years ago
The big bang produced an imprint of leftover heat called
tensa zangetsu [6.8K]
That's called the "Cosmic Microwave Background".  (CMB)
It was discovered in 1965, and its discoverers were awarded
the Nobel Prize in Physics in 1978.
7 0
3 years ago
Read 2 more answers
I will give brainliest if you sub and stay subbed to JD Outdoors & Gaming​
jek_recluse [69]
First Stan txt (tomorrow by together) and stream freeze on YT Hybe labels !!!!!!!!!!!!!

5 0
3 years ago
How do I differentiate between final and initial velocity in Physics?​
pychu [463]

Answer:

Initial velocity describes how fast an object travels when gravity first applies force on the object. On the other hand, the final velocity is a vector quantity that measures the speed and direction of a moving body after it has reached its maximum acceleration.

Explanation:

3 0
2 years ago
Continuous and aligned fiber-reinforced composite with cross-sectional area of 340 mm2 (0.53 in.2) is subjected to a longitudina
Alecsey [184]

(a) 23.4

The fiber-to-matrix load ratio is given by

\frac{F_f}{F_m}=\frac{E_f V_f}{E_m V_m}

where

E_f = 131 GPa is the fiber elasticity module

E_m = 2.4 GPa is the matrix elasticity module

V_f=0.3 is the fraction of volume of the fiber

V_m=0.7 is the fraction of volume of the matrix

Substituting,

\frac{F_f}{F_m}=\frac{(131 GPa)(0.3)}{(2.4 GPa)(0.7)}=23.4 (1)

(b) 44,594 N

The longitudinal load is

F = 46500 N

And it is sum of the loads carried by the fiber phase and the matrix phase:

F=F_f + F_m (2)

We can rewrite (1) as

F_m = \frac{F_f}{23.4}

And inserting this into (2):

F=F_f + \frac{F_f}{23.4}

Solving the equation, we find the actual load carried by the fiber phase:

F=F_f (1+\frac{1}{23.4})\\F_f = \frac{F}{1+\frac{1}{23.4}}=\frac{46500 N}{1+\frac{1}{23.4}}=44,594 N

(c) 1,906 N

Since we know that the longitudinal load is the sum of the loads carried by the fiber phase and the matrix phase:

F=F_f + F_m (2)

Using

F = 46500 N

F_f = 44594 N

We can immediately find the actual load carried by the matrix phase:

F_m = F-F_f = 46,500 N - 44,594 N=1,906 N

(d) 437 MPa

The cross-sectional area of the fiber phase is

A_f = A V_f

where

A=340 mm^2=340\cdot 10^{-6}m^2 is the total cross-sectional area

Substituting V_f=0.3, we have

A_f = (340\cdot 10^{-6} m^2)(0.3)=102\cdot 10^{-6} m^2

And the magnitude of the stress on the fiber phase is

\sigma_f = \frac{F_f}{A_f}=\frac{44594 N}{102\cdot 10^{-6} m^2}=4.37\cdot 10^8 Pa = 437 MPa

(e) 8.0 MPa

The cross-sectional area of the matrix phase is

A_m = A V_m

where

A=340 mm^2=340\cdot 10^{-6}m^2 is the total cross-sectional area

Substituting V_m=0.7, we have

A_m = (340\cdot 10^{-6} m^2)(0.7)=238\cdot 10^{-6} m^2

And the magnitude of the stress on the matrix phase is

\sigma_m = \frac{F_m}{A_m}=\frac{1906 N}{238\cdot 10^{-6} m^2}=8.0\cdot 10^6 Pa = 8.0 MPa

(f) 3.34\cdot 10^{-3}

The longitudinal modulus of elasticity is

E = E_f V_f + E_m V_m = (131 GPa)(0.3)+(2.4 GPa)(0.7)=41.0 Gpa

While the total stress experienced by the composite is

\sigma = \frac{F}{A}=\frac{46500 N}{340\cdot 10^{-6}m^2}=1.37\cdot 10^8 Pa = 0.137 GPa

So, the strain experienced by the composite is

\epsilon=\frac{\sigma}{E}=\frac{0.137 GPa}{41.0 GPa}=3.34\cdot 10^{-3}

3 0
3 years ago
Other questions:
  • A conducting rod (length = 2.0 m) spins at a constant rate of 2.0 revolutions per second about an axis that is perpendicular to
    7·1 answer
  • When did they start using the word "Scrubbed" for launches?
    15·1 answer
  • What force controls the isostatic adjustment of Earth’s crust?
    10·2 answers
  • The Faint Young Sun Paradox points out the following discrepancy: even though the Early Sun put out significantly less energy/ra
    15·1 answer
  • 3 examples of how inertia can change when an unbalanced force acts upon it.
    10·1 answer
  • WILL MARK BRAINLIEST!!! 45 POINTS!!! What is the event horizon and singularity in a black hole?
    15·1 answer
  • A circuit consists of two very low-resistance rails separated by 0.300 m, with a 50.0 ohm resistor connected across them at one
    15·1 answer
  • When you jump from a height to the ground, you let your legs bend at the knees as your feet hit the floor.Why we do this in term
    5·2 answers
  • Thorium (Th) has an average atomic mass of 232.04 u and an atomic number of 90. In the space below, draw a square from the perio
    12·1 answer
  • This happens because the.....particles are most likely to escape from the liquid, causing the temperature of the liquid to.....
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!