Answer:
E - Atomic mass is calculated by weighted atomic average using all the isotope data available.
G - Mass number is equal to the sum of protons and electrons in an atom.
Explanation:
Take an element

- Mass no is 25 and atomic no is 12.
Given :
Three block of same mass name A , B and C .
Sides of block A , B and C is 3.0 cm , 5.0 cm and 10.0 cm .
To Find :
Which block has the higher density .
Solution :
We know , density
is given by :
......1 )
Here , V is volume .
Now , volume V for cube is given :
.......2 )
( Here , a is the side of cube )
Now ,form equation 1 we can see if mass remains constant then density decrease with increase in volume.
Therefore , cube with minimum side will have higher density , in this case it is 3 cm block .
Hence , this is the required solution .
Answer:
Soil conservation is important because soil is crucial for many aspects of human life as it provides food, filters air and water and helps to decompose biological waste into nutrients for new plant life. Soil can be drained away or contaminated, destroying it for use. Soil conversation involves working to reduce contamination and depletion.
Explanation:
hope this helps, pls mark brainliest :D
Answer:
The protein has 4 subunits: 2 subunits of 90 kDa, 1 subunit of 160 kDa and 1 subunit of 60 kDa
Explanation:
In gel electrophoresis, the SDS agent produces denaturation of the protein and confers negative charge, so the protein subunits can migrate according to their masses. It produces dissociation of the protein in its subunits but it cannot disrupt disulphyde bridges (S-S) that can bond subunits together.
From the data, with SDS we observe 3 bands ⇒ 180 kDa + 160 kDa + 60 kDa
The addition of dithiotreitol (DTT), a reducing agent, produces the disruption of disulphyde bridges. From the data:
With DTT ⇒ 160 kDa + 90 kDa + 60 kDa
We observe that 160 kDa and 60 kDa subunits are conserved (they are the same as with SDS only), but 180 kDa subunit is missing and in its place appears a band of 90 kDa - a half 180 kDa.
So, the band at 180 kDa is composed by two subunits bonded by a disulphyde bridge.
Therefore, the composition of the protein is: <em>1 subunit of 160 kDa, 2 subunits of 90 kDa and 1 subunit of 60 kDa</em>.