Magnesium dichromate is the correct name of the compound MgCr₂O₇.
<h3>What is Molecular Formula ?</h3>
The chemical formula that gives total number of atoms of each element in one molecule of a compound is called Molecular Formula.
<h3>What is Oxidation State ?</h3>
Oxidation state is also known as oxidation number. It is defined as the atom is equal to the total number of electrons which have been removed from the element in order to form chemical bond with other atom.
Magnesium dichromate contains the Magnesium ion and chromate ions. Magnesium ion is represented as Mg⁺². Oxidation state of magnesium is +2. The chromate ion is represented as Cr₂O₇⁻². Oxidation state of chromate ion is -2.
Thus from the above conclusion we can say that The correct name of the compound MgCr₂O₇ is Magnesium dichromate.
Learn more about the Oxidation State here: brainly.com/question/8990767
#SPJ4
Notice q=3/2, is half of the original q = 3(<span>1/2</span>)<span>t/28.8
your welcome
</span>
They can use them to find the age of fossils.
Answer:
B. temperature decreases as altitude increases.
Explanation:
Just like in the lower reaches of the atmosphere, the troposphere, in the mesosphere, temperature decreases as altitude increases.
The mesosphere is the third layer of the atmosphere just above the stratosphere.
- It begins at the top of the stratosphere and ends at the mesopause where the thermosphere begins.
- The mesosphere is often referred to as the middle layer.
With increasing height, the temperature of the mesosphere decreases significantly. The top of the mesosphere is one of the coldest part of the earth atmosphere. This is as a result of increasing atmospheric cooling by carbon dioxide in this region of the atmosphere.
Answer:
for the given reaction is -99.4 J/K
Explanation:
Balanced reaction: 
![\Delta S^{0}=[1mol\times S^{0}(NH_{3})_{g}]-[\frac{1}{2}mol\times S^{0}(N_{2})_{g}]-[\frac{3}{2}mol\times S^{0}(H_{2})_{g}]](https://tex.z-dn.net/?f=%5CDelta%20S%5E%7B0%7D%3D%5B1mol%5Ctimes%20S%5E%7B0%7D%28NH_%7B3%7D%29_%7Bg%7D%5D-%5B%5Cfrac%7B1%7D%7B2%7Dmol%5Ctimes%20S%5E%7B0%7D%28N_%7B2%7D%29_%7Bg%7D%5D-%5B%5Cfrac%7B3%7D%7B2%7Dmol%5Ctimes%20S%5E%7B0%7D%28H_%7B2%7D%29_%7Bg%7D%5D)
where
represents standard entropy.
Plug in all the standard entropy values from available literature in the above equation:
![\Delta S^{0}=[1mol\times 192.45\frac{J}{mol.K}]-[\frac{1}{2}mol\times 191.61\frac{J}{mol.K}]-[\frac{3}{2}mol\times 130.684\frac{J}{mol.K}]=-99.4J/K](https://tex.z-dn.net/?f=%5CDelta%20S%5E%7B0%7D%3D%5B1mol%5Ctimes%20192.45%5Cfrac%7BJ%7D%7Bmol.K%7D%5D-%5B%5Cfrac%7B1%7D%7B2%7Dmol%5Ctimes%20191.61%5Cfrac%7BJ%7D%7Bmol.K%7D%5D-%5B%5Cfrac%7B3%7D%7B2%7Dmol%5Ctimes%20130.684%5Cfrac%7BJ%7D%7Bmol.K%7D%5D%3D-99.4J%2FK)
So,
for the given reaction is -99.4 J/K