An an increase in
temperature lead to more effective collisions between reactant particles and an
increase in the rate of a chemical reaction because the number of
molecules with sufficient energy to react increases. The answer is number 3.
Because of pollution from factories and other activities that release harmful gases into the air
Answer:
Mass in nuclear reactions is not strictly conserved due to this principle of mass and energy being quite similar. We know that nuclear reactions release a lot of energy. This energy, though, is actually mass that is lost from nucleons, converted into energy, and lost as the mass defect.
Some mass is turned into energy, according to E=mc2.
<em><u>Explanation:</u></em>
E=mc2 is probably the most famous equation. E is the energy, m is mass, and c is the constant speed of light. Einstein came up with it to show that energy and mass are proportional - one can turn into the other, and back again.
Mass in nuclear reactions is not strictly conserved due to this principle of mass and energy being quite similar. We know that nuclear reactions release a lot of energy. This energy, though, is actually mass that is lost from nucleons, converted into energy, and lost as the mass defect.
Synthesis reactions are reactions that occur when two different atoms or molecules interact to form a different molecule or compound. Most of the time, when a synthesis reaction occurs, energy is released and the reaction is exothermic
Answer:
Positive charges are eliminated by creating lithium vacancies, and for every Ca2+ ion added, a single lithium vacancy is formed.
Explanation:
The addition of calcium oxide as an impurity to lithium oxide creates an interstices due to the replacement of the Lithium ion by calcium ion. The creation of interstices is as a result of the replacement of the positive ions (Lithium by calcium). To make the reaction neutral, these replacements must occur when the interstices are formed