The ball may attracted to the magnet.
<h3>How can we understand that the hanging ball will be attracted to the magnet or not?</h3>
- From the question, we understand that the ball is attracted by the north pole of the bar magnet, then the bar magnet flipped over and the south pole is brought near the hanging ball.
- As we know, in this type of experiments of bar magnet most of the times the ball is made out of steel.
- Steel is a magnetic material.
- Magnetic materials gets attracted to the magnet at both the North and South pole.
- This can be compared to how neutral objects also gets attracted to the positively and negatively charged rods through the Polarization force.
So, If the bar magnet is flipped over and the south pole is brought near the hanging ball, The ball will be attracted to the magnet.
Learn more about the bar magnet:
brainly.com/question/27943723
#SPJ4
Answer:
0.62 rad/s
Explanation:
Angular momentum is conserved.
I₁ ω₁ = I₂ ω₂
where I is moment of inertia and ω is angular velocity.
The total moment of inertia is the sum of the platform's inertia and the boy's.
(I + m r₁²) ω₁ = (I + m r₂²) ω₂
Given I = 1000 kg m², m = 50 kg, r₁ = 4.0 m, r₂ = 3.0 m, and ω₁ = 0.5 rad/s:
(1000 + 50 (4.0)²) (0.5) = (1000 + 50 (3.0)²) ω₂
900 = 1450 ω₂
ω₂ = 0.62 rad/s
Harder. Not compressible(unless using an extremely strong force). Non-metal have more of a chance of breaking than metals.
Answer:
Zero work
Explanation:
Recall that work done on an object is defined as the product of the net force applied to an object times the distance it travels in the same direction as the force.
Since in this case Jim used a given force to push a rock, but it didn't move, then he did zero work (because the distance moved is zero).
The answer would be a motor. If thats one of the options, it was for me :)