Answer: The correct answer is option C: Both events are equally likely to occur
Step-by-step explanation: For the first experiment, Corrine has a six-sided die, which means there is a total of six possible outcomes altogether. In her experiment, Corrine rolls a number greater than three. The number of events that satisfies this condition in her experiment are the numbers four, five and six (that is, 3 events). Hence the probability can be calculated as follows;
P(>3) = Number of required outcomes/Number of possible outcomes
P(>3) = 3/6
P(>3) = 1/2 or 0.5
Therefore the probability of rolling a number greater than three is 0.5 or 50%.
For the second experiment, Pablo notes heads on the first flip of a coin and then tails on the second flip. for a coin there are two outcomes in total, so the probability of the coin landing on a head is equal to the probability of the coin landing on a tail. Hence the probability can be calculated as follows;
P(Head) = Number of required outcomes/Number of all possible outcomes
P(Head) = 1/2
P(Head) = 0.5
Therefore the probability of landing on a head is 0.5 or 50%. (Note that the probability of landing on a tail is equally 0.5 or 50%)
From these results we can conclude that in both experiments , both events are equally likely to occur.
Answer: Top right and left are ACUTE, Bottom right is RIGHT, and bottom left is OBTUSE.
Answer:
Some cities and towns are called municipali- ties. If a city government incorporates by citizen request, it is considered a municipal govern- ment. Cities in Texas operate under one of two types of law—general law or home rule. Small cities with populations of less than 5,000 may incorporate as a general-law city.
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Algebra I</u>
<u>Calculus</u>
Implicit Differentiation
The derivative of a constant is equal to 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Product Rule: ![\frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Chain Rule: ![\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Quotient Rule: ![\frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
-xy - 2y = -4
Rate of change of the tangent line at point (-1, 4)
<u>Step 2: Differentiate Pt. 1</u>
<em>Find 1st Derivative</em>
- Implicit Differentiation [Product Rule/Basic Power Rule]:

- [Algebra] Isolate <em>y'</em> terms:

- [Algebra] Factor <em>y'</em>:

- [Algebra] Isolate <em>y'</em>:

- [Algebra] Rewrite:

<u>Step 3: Find </u><em><u>y</u></em>
- Define equation:

- Factor <em>y</em>:

- Isolate <em>y</em>:

- Simplify:

<u>Step 4: Rewrite 1st Derivative</u>
- [Algebra] Substitute in <em>y</em>:

- [Algebra] Simplify:

<u>Step 5: Differentiate Pt. 2</u>
<em>Find 2nd Derivative</em>
- Differentiate [Quotient Rule/Basic Power Rule]:
![y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}](https://tex.z-dn.net/?f=y%27%27%20%3D%20%5Cfrac%7B0%28x%2B2%29%5E2%20-%208%20%5Ccdot%202%28x%20%2B%202%29%20%5Ccdot%201%7D%7B%5B%28x%20%2B%202%29%5E2%5D%5E2%7D)
- [Derivative] Simplify:

<u>Step 6: Find Slope at Given Point</u>
- [Algebra] Substitute in <em>x</em>:

- [Algebra] Evaluate:
