Answer:
Juno scientific payload includes:
- A gravity/radio science system (Gravity Science)
- A six-wavelength microwave radiometer for atmospheric sounding and composition (MWR)
- A vector magnetometer (MAG)
- Plasma and energetic particle detectors (JADE and JEDI)
- A radio/plasma wave experiment (Waves)
- An ultraviolet imager/spectrometer (UVS)
- An infrared imager/spectrometer (JIRAM)
Explanation:
Each mission of NASA has a specific set of instruments that it uses to perform scientific experiments on the desired heavenly body. In case of Juno, the mission for Jupiter has a series of instruments that would study domains of gravitational forces, magnetic effect, particle detection, radiation detection, UV/IR imaging, and plasma experiments.
Answer: 2200J
Explanation:
M = 44kg
V = 10m/s
K.E =?
K.E = 1/2MV2 = 1/2 x 44 x (10)^2
K.E = 22 x 100
K.E = 2200J
Answer:
The atoms are aligned in a particular direction
Explanation:
The atoms become aligned in a particular direction in regions called domains, thus resulting in an overall resultant magnetism due to the spin of the electrons.
Answer:
All of these answers are dependent upon the specific scenario, but here are some general answers.
1. An object with a greater height will have more potential energy.
2. Potential energy can be changed into kinetic energy as an object falls. It loses height (potential energy) and gains speed (kinetic energy).
3. Depends on what scenario your class had.