Answer:
Option B
Explanation:
Gravitational force is a force that attracts two bodies (with a mass) towards each other. If an object has a higher mass, the gravitational pull will be greater.
According to Newton’s inverse square law:
<em>"The gravitational force is inversely proportional to the square of the distance between two bodies."</em>
About this question, the greater the distance between two gravitating bodies, the weaker is the gravitational force between them.
Answer: B = 1380T
Explanation: please find the attached file for the solution
Answer: 8 meters per second
Explanation: If you add 60 to 20 you get 80 meters and since he ran those 80 meters in 10 seconds you divide 80 by ten and get 8 and then you get 8m/s
- Weight (W) = 110 N
- Acceleration due to gravity (g) = 9.8 m/s^2
- Let the mass of the object be m.
- By using the formula, W = mg, we get,
- 110 N = 9.8 m/s^2 × m
- or, m = 110 N ÷ 9.8 m/s^2
- or, m = 11.2 Kg
<u>Answer:</u>
<em><u>The </u></em><em><u>mass </u></em><em><u>of </u></em><em><u>the </u></em><em><u>object </u></em><em><u>is </u></em><em><u>1</u></em><em><u>1</u></em><em><u>.</u></em><em><u>2</u></em><em><u> </u></em><em><u>Kg.</u></em>
Hope you could get an idea from here.
Doubt clarification - use comment section.
Answer:
Vb = k Q / r r <R
Vb = k q / R³ (R² - r²) r >R
Explanation:
The electic potential is defined by
ΔV = - ∫ E .ds
We calculate the potential in the line of the electric pipe, therefore the scalar product reduces the algebraic product
VB - VA = - ∫ E dr
Let's substitute every equation they give us and we find out
r> R
Va = - ∫ (k Q / r²) dr
-Va = - k Q (- 1 / r)
We evaluate with it Va = 0 for r = infinity
Vb = k Q / r r <R
We perform the calculation of the power with the expression of the electric field that they give us
Vb = - int (kQ / R3 r) dr
We integrate and evaluate from the starting point r = R to the final point r <R
Vb = ∫kq / R³ r dr
Vb = k q / R³ (R² - r²)
This is the electric field in the whole space, the places of interest are r = 0, r = R and r = infinity