Refer to the diagram shown below.
Given:
R = 6.37 x 10⁶ m, the radius of the earth
h = 3.58 x 10⁷ m, the height of the satellite above the earth's surface.
Therefore
R + h = 4.217 x 10⁷ m
In geosynchronous orbit, the period of rotation is 1 day.
Therefore the period is
T = (24 h)*(60 min/h)*(60 s/min) = 86400 s
The angular velocity is
ω = (2π rad)/(86400 s) = 7.2722 x 10⁻⁵ rad/s
Part (a)
The tangential speed is
v = (R+h)*ω
= (4.217 x 10⁷ m)*(7.2722 x 10⁻⁵ rad/s)
= 3066.7 m/s
= 3.067 km/s
Part (b)
The centripetal acceleration is
a = v²/(R+h)
= (3066.7 m/s)²/(4.217 x 10⁷ m)
= 0.223 m/s²
Answers:
(a) The speed is 3.067 km/s
(b) The acceleration is 0.223 m/s²
Answer:
Gamma rays have the highest energies, the shortest wavelengths, and the highest frequencies. Radio waves, on the other hand, have the lowest energies, longest wavelengths, and lowest frequencies of any type of EM radiation.
Explanation:
Hope this helps:)
First do 1.6 m (how far he jumps) 9.8 m/s (what gravity is measured at) then times 2
= 31.36
Sq root = 5.6
Answer:
t = 5.59x10⁴ y
Explanation:
To calculate the time for the ¹⁴C drops to 1.02 decays/h, we need to use the next equation:
(1)
<em>where
: is the number of decays with time, A₀: is the initial activity, λ: is the decay constant and t: is the time.</em>
To find A₀ we can use the following equation:
(2)
<em>where N₀: is the initial number of particles of ¹⁴C in the 1.03g of the trees carbon </em>
From equation (2), the N₀ of the ¹⁴C in the trees carbon can be calculated as follows:
<em>where
: is the tree's carbon mass,
: is the Avogadro's number and
: is the ¹²C mass. </em>
Similarly, from equation (2) λ is:
<em>where t 1/2: is the half-life of ¹⁴C= 5700 years </em>

So, the initial activity A₀ is:
Finally, we can calculate the time from equation (1):
I hope it helps you!