1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anygoal [31]
3 years ago
8

If the solar system shrank so that the sun were located just one centimeter from Earth, about how far away could you find the ne

xt nearest star?
Physics
1 answer:
DedPeter [7]3 years ago
8 0
E                  S                                                               *

The "E" represents Earth, "S" represent Sun, and the "*" represents the nearest star(which is Proxima Centauri).

The main thing to worry about here is units, so ill label everything out.
D'e,s'(Distance between earth and sun) = .<span>00001581 light years
D'e,*'(Distance between earth and Proxima) = </span><span>4.243 light years

Now this is where it gets fun, we need to put all the light years into centimeters.(theres alot)
In one light year, there are </span>9.461 * 10^17 centimeters.(the * in this case means multiplication) or 946,100,000,000,000,000 centimeters.

To convert we multiply the light years we found by the big number.
D'e,s'(Distance between earth and sun) = 1.496 * 10^13 centimeters<span>
D'e,*'(Distance between earth and Proxima) = </span><span>4.014 * 10^18 centimeters
</span>
Now we scale things down, we treat 1.496 * 10^13 centimeters as a SINGLE centimeter, because that's the distance between the earth and the sun. So all we have to do is divide (4.014 * 10^18 ) by (<span>1.496 * 10^13 ).
Why? because that how proportions work.

As a result, you get a mere 268335.7 centimeters.

To put that into perspective, that's only about 1.7 miles

A lot of my numbers came from google, so they are estimations and are not perfect, but its hard to be on really large scales.</span>
You might be interested in
4. I drop a pufferfish of mass 5 kg from a height of 5.5 m onto an upright spring of total length 0.5 m and spring constant 3000
KatRina [158]

Answer:

a)  0.28 m or 28 cm is the minimum  height above ground the fish reaches.

b)  at the height of 0.484 m height , the pufferfish will eventually come to rest.

c) There exists  two types of energy remain at the equilibrium point in the system. These are :

Gravitational potential energy  = 23.72J

Spring potential energy   = 0.384 J

Explanation:

Given that :

Mass of the pufferfish m =5kg

initial height of the fish h =5.5m

length of the spring l =0.5m

Spring constant K =3000N/m

a)

Assuming no energy loss to friction, what is the minimum height above the ground that the pufferfish reaches?

Lets assume that the minimum height the fish reaches is = x meters

Now by using the conservation of energy; we realize that :

Initial total energy = final total energy

Gravitational potential energy =

Gravitational potential energy' + Spring potential energy (kinetic energy is zero in both cases)

mgh = mgx + \frac{1}{2}K(l-x)^2

Replacing our given values into the above equation; we have :

(5)(9.8)(5.5) = (5)(9.5)(x) + \frac{1}{2}(3000)(0.5-x)^2

269.5 = 47.5 x + 1500(0.5 -x )²

269.5 = 47.5 x + 1500(0.25 - x²)

269.5 = 47.5 x + 375 - 1500 x²

269.5 - 375 = 47.5 x - 1500 x²

-105.5 = 47.5 x - 1500 x²

-105.5 + 1500 x² - 47.5 x = 0

1500 x² - 47.5 x - 105.5 = 0

By using quadratic equation and taking the positive value;

x = 0.28 m or 28 cm is the minimum height above ground the fish reaches.

b)

At the equilibrium position the weight of fish will be equal to the force applied by the spring thus

mg = kx

substituting  our given values ; we have:

(5)(9.8) = 3000x

x = 61.22

x = 0.016m  : so this is the compression in the spring

Now; to determine the height  the pufferfish gets to before  it eventually come to rest; we have

(0.5-0.016) m = 0.484m

therefore, at the height of 0.484 m height , the pufferfish will eventually come to rest.

c)

There exists  two types of energy remain at the equilibrium point in the system. These are :

Gravitational potential energy  = mgh' = (5)(9.8)(0.484)

= 23.72J

and spring potential energy  

=\frac{1}{2}Kx^2\\ = \frac{1}{2}(3000)(0.016)^2\\= 0.384J

8 0
3 years ago
Suppose your surface body temperature averaged 90 degrees F. How much radiant energy in W/m^2 would be emitted from your body?
Debora [2.8K]

493 \; \text{W}\cdot \text{m}^{-2}.

<h3>Explanation</h3>

The Stefan-Boltzmann Law gives the energy radiation <em>per unit area</em> of a black body:

\dfrac{P}{A} = \sigma \cdot T^{4}

where,

  • P the total power emitted,
  • A the surface area of the body,
  • \sigma the Stefan-Boltzmann Constant, and
  • T the temperature of the body in degrees Kelvins.

\sigma = 5.67 \times 10^{-8} \;\text{W}\cdot \text{m}^{-2} \cdot \text{K}^{-4}.

T = 90 \; \textdegree{}\text{F} = (\dfrac{5}{9} \cdot (90-32) + 273.15) \; \text{K} = 305.372 \; \text{K}.

\dfrac{P}{A} = \sigma \cdot T^{4} = 5.67 \times 10^{-8} \times 305.372^{4} = 493\; \text{W}\cdot \text{m}^{-2}.

Keep as many significant figures in T as possible. The error will be large when T is raised to the power of four. Also, the real value will be much smaller than 493\; \text{W}\cdot \text{m}^{-2} since the emittance of a human body is much smaller than assumed.

5 0
3 years ago
Why was miasma theory replaced?
GaryK [48]
In the mid of the 19th century the miasma theory was replaced by the germ theory of diseases (Maia 2013) The Greek physician Hippocrates (c.460- 377 B.C.E) believed that bad air could be the cause of any pestilences, the fatal epidemic.


Hope that helps!
8 0
3 years ago
Currents during lightning strikes can be up to 50000 A (or more!). We can model such a strike as a 47500 A vertical current perp
Rufina [12.5K]

Answer:

57 N

Explanation:

Force on a current carrying conductor in a magnetic field

B = 12 X 10⁻⁴ T

= Bil where B is magnetic field , i is current and l is length of conductor

force required = 12 x10⁻⁴ x 47500 x 1

= 57 N

6 0
2 years ago
Why do some things stick together and others do not?
natita [175]

Answer:

Some examples of things that stick together include clothes after they were in the dryer because a charge builds up on the objects, causing them to attract to each other. Things that don't stick together may include two neutral objects, like two pieces of neutral paper. ... If they repel, then they are the same charge.

Explanation:

6 0
3 years ago
Other questions:
  • How to type a capital letter in my computer​
    9·2 answers
  • Earth Space Science
    6·2 answers
  • Which of the following shows the correct order of structures? A. cells organs tissues systems B. cells systems tissues organs C.
    11·2 answers
  • You decide it is time to clean your pool since summer is quickly approaching. Your pool maintenance guide specifies that the chl
    14·1 answer
  • What is the difference in KE between a 52.5 kg person running 3.50 m/s and a 0.0200 kg bullet flying 450 m/s?
    7·1 answer
  • An Olympic skier moving at 20.0 m/s down a 30.0o slope encounters a region of wet snow, of
    12·1 answer
  • QUESTION If the angular acceleration were doubled for the same duration, by what factor would the angular displacement change
    9·1 answer
  • Four satellites are in orbit around the Earth. The heights of their four orbits
    11·1 answer
  • HURRY PLEASE
    13·1 answer
  • What holds the moon in place, orbiting around earth?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!