Answer:
The volume is 
Step-by-step explanation:
The General Slicing Method is given by
<em>Suppose a solid object extends from x = a to x = b and the cross section of the solid perpendicular to the x-axis has an area given by a function A that is integrable on [a, b]. The volume of the solid is</em>

Because a typical cross section perpendicular to the x-axis is a square disk (according with the graph below), the area of a cross section is
The key observation is that the width is the distance between the upper bounding curve
and the lower bounding curve 
The width of each square is given by

This means that the area of the square cross section at the point x is

The intersection points of the two bounding curves satisfy
, which has solutions x = ±1.

Therefore, the cross sections lie between x = -1 and x = 1. Integrating the cross-sectional areas, the volume of the solid is
![V=\int\limits^{1}_{-1} {(2-2x^2)^2} \, dx\\\\V=\int _{-1}^14-8x^2+4x^4dx\\\\V=\int _{-1}^14dx-\int _{-1}^18x^2dx+\int _{-1}^14x^4dx\\\\V=\left[4x\right]^1_{-1}-8\left[\frac{x^3}{3}\right]^1_{-1}+4\left[\frac{x^5}{5}\right]^1_{-1}\\\\V=8-\frac{16}{3}+\frac{8}{5}\\\\V=\frac{64}{15}](https://tex.z-dn.net/?f=V%3D%5Cint%5Climits%5E%7B1%7D_%7B-1%7D%20%7B%282-2x%5E2%29%5E2%7D%20%5C%2C%20dx%5C%5C%5C%5CV%3D%5Cint%20_%7B-1%7D%5E14-8x%5E2%2B4x%5E4dx%5C%5C%5C%5CV%3D%5Cint%20_%7B-1%7D%5E14dx-%5Cint%20_%7B-1%7D%5E18x%5E2dx%2B%5Cint%20_%7B-1%7D%5E14x%5E4dx%5C%5C%5C%5CV%3D%5Cleft%5B4x%5Cright%5D%5E1_%7B-1%7D-8%5Cleft%5B%5Cfrac%7Bx%5E3%7D%7B3%7D%5Cright%5D%5E1_%7B-1%7D%2B4%5Cleft%5B%5Cfrac%7Bx%5E5%7D%7B5%7D%5Cright%5D%5E1_%7B-1%7D%5C%5C%5C%5CV%3D8-%5Cfrac%7B16%7D%7B3%7D%2B%5Cfrac%7B8%7D%7B5%7D%5C%5C%5C%5CV%3D%5Cfrac%7B64%7D%7B15%7D)
search up on google volume of a cone and type in your numbers and it will show you the answers
I think it’s Step 2 your welcome
M is dependent and h is independent
m=money and h=hours, p =money per hour
m=ph
Answer:

Step-by-step explanation:
Split up this Isosceles, Right Triangle into two congruent smaller right triangles. The reflexive side [the line that splits them apart] is 6 units, and both legs are 8 units, leaving the hypotenuses to AUTOMATICALLY be 10 units, according to the Pythagorean Theorem:

With this Pythagorean Triple, we know that our dimensions are correct. Now, to find the perimeter, just add up all the sides EXCEPT for the divider:
![\displaystyle 2[10] + 2[8] = 20 + 16 = 36](https://tex.z-dn.net/?f=%5Cdisplaystyle%202%5B10%5D%20%2B%202%5B8%5D%20%3D%2020%20%2B%2016%20%3D%2036)
I am joyous to assist you anytime.