In order to balance this, you have to count
each element where the elements in the reactants side and the product side
should have equal number of molecules. The balanced reaction is as follows:
KOH + H3PO4 = KH2PO4 +H2O
Answer:
Molarity of the sodium hydroxide solution is 1.443 M/L
Explanation:
Given;
0.60 M concentration of NaOH contains 2.0 L
3.0 M concentration of NaOH contains 495 mL
Molarity is given as concentration of the solute per liters of the solvent.
If the volumes of the two solutions are additive, then;
the total volume of NaOH = 2 L + 0.495 L = 2.495 L
the total concentration of NaOH = 0.6 M + 3.0 M = 3.6 M
Molarity of NaOH solution = 3.6 / 2.495
Molarity of NaOH solution = 1.443 M/L
Therefore, molarity of the sodium hydroxide solution is 1.443 M/L
Explanation:
yes you got the right idea
Answer:
b.) Br and Br
Explanation:
A covalent bond occurs when electrons are shared between two atoms causing them to form a bond.
A "pure" covalent bond refers to a nonpolar covalent bond. In these bonds, the electrons are shared equally between two atoms as a result of the absence of an (or very small) electronegativity difference. The purest covalent bond would therefore be between two atoms of the same electronegativity. Two bromines (Br) have the same electronegativity, thus making it the purest covalent bond.
Polar covalent bonds occur when electrons are shared unequally between two atoms. There is a larger electronegativity difference between the two atoms, but not large enough to classify the bonds as ionic. In this case, a.) and c.) are polar covalent bonds and d.) is an ionic bond.