Answer:
The composition of the objects because not all the planets have been explored
Answer:
The correct answer is 199.66 grams per mole.
Explanation:
Based on law of effusion given by Graham, a gas rate of effusion is contrariwise proportionate to the square root of molecular mass, that is, rate of effusion of gas is inversely proportional to the square root of mass. Therefore,
R1/R2 = √ M2/√ M1
Here rate is the rate of effusion of the gas expressed in terms of number of mole per uni time or volume, and M is the molecular mass of the gas.
Rate Q/Rate N2 = √M of N2/ √M of Q
The molecular mass of N2 or nitrogen gas is 28 grams per mole and M of Q is molecular mass of Q and based on the question Q needs 2.67 times more to effuse in comparison to nitrogen gas, therefore, rate of Q = rate of N2/2.67
Now putting the values we get,
rate of N2/2.67/rate of N2 = √28/ √M of Q
√M of Q = √ 28 × 2.67
M of Q = (√ 28 × 2.67)²
M of Q = 199.66 grams per mole
Explanation:
The mass of a pot is 300g and contains 90% aluminum. Find the number of moles of aluminum in the pot. P.A. (Al = 27)
The mass of aluminum present in the pot is:

Hence, in the given pot 270g Al is present.

The gram atomic mass of Al -27 g/mol
Given the mass of Al is 270 g
Substitute these values in the above formula:

Answer is 10.0 mol of Al is present.
It is in Group 3A = 3 valence electrons
Electron Config. = 1s2 2s2 2p6 3s2 3p1