The molecular formula of HgCl (m = 5 472.1 g/mol) is Hg2Cl4.
The molecular formula is an expression that defines the number of atoms of each element in one molecule of a compound. It shows the actual number of each atom in a molecule.
<h3>Molecular formula: What is it?</h3>
A chemical formula is a way to communicate information in chemistry about the proportions of atoms that make up a specific chemical compound or molecule. Chemical element symbols, numbers, and occasionally other symbols like parentheses, dashes, brackets, commas, and plus and minus signs are used to represent the chemical elements.
A molecule's molecular formula reveals which atoms and how many of each kind are included within it. No subscript is used if there is just one atom of a certain kind. A subscript is added to the symbol for an atom if it contains two or more of a certain type of atom.
To learn more about molecular formula visit:
brainly.com/question/14425592
#SPJ4
Answer:
NO would form 65.7 g.
H₂O would form 59.13 g.
Explanation:
Given data:
Moles of NH₃ = 2.19
Moles of O₂ = 4.93
Mass of NO produced = ?
Mass of produced H₂O = ?
Solution:
First of all we will write the balance chemical equation,
4NH₃ + 5O₂ → 4NO + 6H₂O
Now we will compare the moles of NO and H₂O with ammonia from balanced chemical equation:
NH₃ : NO NH₃ : H₂O
4 : 4 4 : 6
2.19 : 2.19 2.19 : 6/4 × 2.19 = 3.285 mol
Now we will compare the moles of NO and H₂O with oxygen from balanced chemical equation:
O₂ : NO O₂ : H₂O
5 : 4 5 : 6
4.93 : 4/5×4.93 = 3.944 mol 4.93 : 6/5 × 4.93 = 5.916 mol
we can see that moles of water and nitrogen monoxide produced from the ammonia are less, so ammonia will be limiting reactant and will limit the product yield.
Mass of water = number of moles × molar mass
Mass of water = 3.285 mol × 18 g/mol
Mass of water = 59.13 g
Mass of nitrogen monoxide = number of moles × molar mass
Mass of nitrogen monoxide = 2.19 mol × 30 g/mol
Mass of nitrogen monoxide = 65.7 g