By setting up a system of equations we can easily solve this problem. Let's denote Jane's working hours with x and Jack's working hours with y. Since they don't want to work more than 65 hours, the first equation is x+y=65. The second equation is 14x+7y=770. By solving this system of equation

, we find that y=20 hours, which is Jack's maximum working hours.
Answer:
Ligh blue
Step-by-step explanation:
Use PEMDAS, the answer that I got is 19.
Answer:
33%
Step-by-step explanation:
h steps:
Step 1: We make the assumption that 51 is 100% since it is our output value.
Step 2: We next represent the value we seek with $x$.
Step 3: From step 1, it follows that $100\%=51$.
Step 4: In the same vein, $x\%=17$.
Step 5: This gives us a pair of simple equations:
$100\%=51(1)$.
$x\%=17(2)$.
Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have
$\frac{100\%}{x\%}=\frac{51}{17}$
Step 7: Taking the inverse (or reciprocal) of both sides yields
$\frac{x\%}{100\%}=\frac{17}{51}$
$\Rightarrow x=33.33\%$
Therefore, $17$ is $33.33\%$ of $51$.
Answer:
2 per minute
Step-by-step explanation:
Because 8 divided by 4 is 2.